Section 7.4 Basic theory of systems of first order linear equations.

Consider a system of n first order linear equations

$$\begin{cases} x'_{1} = p_{11}(t)x_{1} + \dots + p_{1n}(t)x_{n} + g_{1}(t) \\ \vdots \\ x'_{n} = p_{n1}(t)x_{1} + \dots + p_{nn}(t)x_{n} + g_{n}(t) \end{cases}$$
(1)

System (1) can be written in matrix notation as

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \tag{2}$$
where $\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \cdots \\ x_n(t) \end{pmatrix}, \ \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \\ \cdots \\ g_n(t) \end{pmatrix}, \ \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) & \cdots & p_{1n}(t) \\ p_{21}(t) & p_{22}(t) & \cdots & p_{2n}(t) \\ \vdots & \vdots & \vdots \\ p_{n1}(t) & p_{n2}(t) & \cdots & p_{nn}(t) \end{pmatrix}. \tag{2}$

We assume that $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are continuous on some interval $I = [\alpha, \beta]$.

The corresponding system of **homogeneous** equations is

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x},\tag{3}$$

Once the homogeneous system has been solved, there are several methods that can be used to solve the nonhomogeneous system (2), we'll discuss them later. We use the notation

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \\ \cdots \\ x_{n1}(t) \end{pmatrix}, \cdots, \mathbf{x}^{(k)}(t) = \begin{pmatrix} x_{1k}(t) \\ x_{2k}(t) \\ \cdots \\ x_{nk}(t) \end{pmatrix}, \cdots$$
(4)

to designate specific solutions of the system (3).

Theorem 1.(Principle of superposition.) If the vector functions $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are solutions of the system (3), then the linear combination $c_1\mathbf{x}^{(1)}(t) + c_2\mathbf{x}^{(2)}(t)$ is also a solution for any constants c_1 and c_2 .

Let $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$,..., $\mathbf{x}^{(n)}(t)$ be *n* solutions of the system (3), and consider the matrix $\mathbf{X}(t)$ whose columns are the vectors $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$,..., $\mathbf{x}^{(n)}(t)$

$$\mathbf{X}(t) = \begin{pmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{pmatrix}.$$
(5)

Definition. The Wronskian of the *n* solutions $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$,..., $\mathbf{x}^{(n)}(t)$ is

$$W\left[\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\right](t) = \det \mathbf{X}(t)$$
(6)

The solutions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are then **linearly independent** at a point t_0 if and only if $W[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}](t_0) \neq 0$.

Theorem 2. If the vector functions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are linearly independent solutions of the system (3) for each point in the interval *I*, then each solution $\mathbf{x} = \boldsymbol{\varphi}(t)$ of the system (3) can be expressed as a linear combination of $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$

$$\boldsymbol{\varphi}(t) = c_1 \mathbf{x}^{(1)}(t) + \dots + c_n \mathbf{x}^{(n)}(t) \tag{7}$$

in exactly one way.

This means that the equation (7) includes all solutions of the system (3), and it is the **general solution**.

Definition. Any set of solutions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ of the system (3) that is linearly independent at each point $\alpha < t_0 < \beta$ said to be a **fundamental set of solutions** for that interval.

Theorem 3. If $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are solutions of the system (3) on the interval *I*, then in this interval $W[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}]$ either is identically zero or else never vanishes.

Example 1. Given the system

$$\mathbf{x}' = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right) \mathbf{x}.$$

Verify that $\mathbf{x}^{(1)}(t) = (e^{2t}, e^{2t}, e^{2t})^T$, $\mathbf{x}^{(2)}(t) = (-e^{-t}, 0, e^{-t})^T$ and $\mathbf{x}^{(3)}(t) = (0, e^{-t}, -e^{-t})^T$ form a fundamental set of solutions.

Theorem 4. If $\mathbf{x} = \mathbf{u}(t) + i\mathbf{v}(t)$ is a complex-valued solution of the system (3), then its real part $\mathbf{u}(t)$ and its imaginary part $\mathbf{v}(t)$ are also solutions of the system.