Consider a system of n first order linear equations

$$
\left\{\begin{align*}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \tag{1}\\
& \vdots \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
\end{align*}\right.
$$

System (1) can be written in matrix notation as
$\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$,
where $\mathbf{x}(t)=\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \cdots \\ x_{n}(t)\end{array}\right), \mathbf{g}(t)=\left(\begin{array}{c}g_{1}(t) \\ g_{2}(t) \\ \cdots \\ g_{n}(t)\end{array}\right), \mathbf{P}(t)=\left(\begin{array}{cccc}p_{11}(t) & p_{12}(t) & \cdots & p_{1 n}(t) \\ p_{21}(t) & p_{22}(t) & \cdots & p_{2 n}(t) \\ \vdots & \vdots & & \vdots \\ p_{n 1}(t) & p_{n 2}(t) & \cdots & p_{n n}(t)\end{array}\right)$.
We assume that $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are continuous on some interval $I=[\alpha, \beta]$.

The corresponding system of homogeneous equations is

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x} \tag{3}
\end{equation*}
$$

Once the homogeneous system has been solved, there are several methods that can be used to solve the nonhomogeneous system (2), we'll discuss them later. We use the notation

$$
\mathbf{x}^{(1)}(t)=\left(\begin{array}{c}
x_{11}(t) \tag{4}\\
x_{21}(t) \\
\cdots \\
x_{n 1}(t)
\end{array}\right), \cdots, \mathbf{x}^{(k)}(t)=\left(\begin{array}{c}
x_{1 k}(t) \\
x_{2 k}(t) \\
\ldots \\
x_{n k}(t)
\end{array}\right), \cdots
$$

to designate specific solutions of the system (3).
Theorem 1.(Principle of superposition.) If the vector functions $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are solutions of the system (3), then the linear combination $c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$ is also a solution for any constants c_{1} and c_{2}.

Let $\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t), \ldots, \mathbf{x}^{(n)}(t)$ be n solutions of the system (3), and consider the matrix $\mathbf{X}(t)$ whose columns are the vectors $\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t), \ldots, \mathbf{x}^{(n)}(t)$

$$
\mathbf{X}(t)=\left(\begin{array}{cccc}
x_{11}(t) & x_{12}(t) & \cdots & x_{1 n}(t) \tag{5}\\
x_{21}(t) & x_{22}(t) & \cdots & x_{2 n}(t) \\
\vdots & \vdots & & \vdots \\
x_{n 1}(t) & x_{n 2}(t) & \cdots & x_{n n}(t)
\end{array}\right)
$$

Definition. The Wronskian of the n solutions $\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t), \ldots, \mathbf{x}^{(n)}(t)$ is

$$
\begin{equation*}
W\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right](t)=\operatorname{det} \mathbf{X}(t) \tag{6}
\end{equation*}
$$

The solutions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are then linearly independent at a point t_{0} if and only if $W\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right]\left(t_{0}\right) \neq 0$.

Theorem 2. If the vector functions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are linearly independent solutions of the system (3) for each point in the interval I, then each solution $\mathbf{x}=\varphi(t)$ of the system (3) can be expressed as a linear combination of $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$

$$
\begin{equation*}
\boldsymbol{\varphi}(t)=c_{1} \mathbf{x}^{(1)}(t)+\cdots+c_{n} \mathbf{x}^{(n)}(t) \tag{7}
\end{equation*}
$$

in exactly one way.

This means that the equation (7) includes all solutions of the system (3), and it is the general solution.

Definition. Any set of solutions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ of the system (3) that is linearly independent at each point $\alpha<t_{0}<\beta$ said to be a fundamental set of solutions for that interval.

Theorem 3. If $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are solutions of the system (3) on the interval I, then in this interval $W\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right]$ either is identically zero or else never vanishes.

Example 1. Given the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \mathbf{x}
$$

Verify that $\mathbf{x}^{(1)}(t)=\left(e^{2 t}, e^{2 t}, e^{2 t}\right)^{T}, \mathbf{x}^{(2)}(t)=\left(-e^{-t}, 0, e^{-t}\right)^{T}$ and $\mathbf{x}^{(3)}(t)=\left(0, e^{-t},-e^{-t}\right)^{T}$ form a fundamental set of solutions.

Theorem 4. If $\mathbf{x}=\mathbf{u}(t)+i \mathbf{v}(t)$ is a complex-valued solution of the system (3), then its real part $\mathbf{u}(t)$ and its imaginary part $\mathbf{v}(t)$ are also solutions of the system.

