Section 7.6 Complex eigenvalues

here $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right), \mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)$.
Any complex eigenvalue must occur in conjugate pairs. If $\lambda=\alpha+i \beta$ is an eigenvalue of the matrix \mathbf{A}, then so is $\bar{\lambda}=\alpha-i \beta$.

If $\mathbf{v}=\mathbf{u}+i \mathbf{w}$ is an eigenvector corresponding to $\lambda=\alpha+i \beta$, then $\overline{\mathbf{v}}=\mathbf{u}-i \mathbf{w}$ is an eigenvector corresponding to $\bar{\lambda}=\alpha-i \beta$. The corresponding solution of the system is

$$
\begin{aligned}
& \mathbf{x}(t)=(\mathbf{u}+i \mathbf{w}) e^{(\alpha+i \beta) t}=(\mathbf{u}+i \mathbf{w})(\cos \beta t+i \sin \beta t) e^{\alpha t} \\
& \left.=(\mathbf{u} \cos \beta t-\mathbf{w} \sin \beta t)) e^{\alpha t}+i(\mathbf{u} \sin \beta t+\mathbf{w} \cos \beta t)\right) e^{\alpha t}
\end{aligned}
$$

The vectors

$$
\begin{aligned}
& \left.\mathbf{x}_{1}(t)=\Re(\mathbf{x}(t))=(\mathbf{u} \cos \beta t-\mathbf{w} \sin \beta t)\right) e^{\alpha t} \\
& \left.\mathbf{x}_{2}(t)=\Im(\mathbf{x}(t))=(\mathbf{u} \sin \beta t+\mathbf{w} \cos \beta t)\right) e^{\alpha t}
\end{aligned}
$$

are real valued solutions of the svstem.

Example 1. Find the general solution of the system

1. $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-2 & 3 \\ -3 & -2\end{array}\right) \mathrm{x}$

$$
A=\left(\begin{array}{cc}
-2 & 3 \\
-3 & -2
\end{array}\right), \begin{aligned}
& \operatorname{tr}(A)=-4 \\
& \operatorname{det}(A)=4+9=13
\end{aligned}
$$

characteristic polynoncial

$$
\begin{aligned}
& \lambda^{2}+4 \lambda+B=0 \\
& \lambda_{1}=\frac{-4+\sqrt{16-52}}{2}=\frac{-4+\sqrt{-36}}{2}=\frac{-4+6 i}{2}=-2+3 i
\end{aligned}
$$

$$
\lambda_{2}=-2-3 i=\overline{\lambda_{1}}
$$

$\lambda_{1}=-2+3 i$. $\vec{v}=\binom{v_{1}}{v_{2}}$ is a solution of $\quad(\lambda-(-2+3 i) I) \vec{v}=\overrightarrow{0}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
-2-(-2+3 i) & 3 \\
-3 & -2-(-2+3 i)
\end{array}\right) \vec{v}=\overrightarrow{0} \\
& \left(\begin{array}{cc}
-3 i & 3 \\
-3 & 3 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \quad \Rightarrow \quad \begin{array}{r}
-3 i v_{1}+3 v_{2}=0 \\
v_{2}=i v_{1}
\end{array} .
\end{aligned}
$$

$$
\vec{v}=\binom{v_{1}}{i v_{1}}=v_{1}\binom{1}{i}
$$

$\vec{x}=\binom{1}{i}$ corresponds to $\lambda=-2+3 i$
phase portrait:

$$
a_{21}=-3<0
$$

clockwise direction $(0,0)$ is a spiral sink, and it is asymptotically stable

$$
\begin{aligned}
& \vec{x} e^{\lambda t}=\binom{1}{i} e^{(-2+3 i) t}=\binom{1}{i} e^{-2 t}(\cos 3 t+i \sin 3 t) \\
& =e^{-2 t}\binom{\cos 3 t+i \sin 3 t}{i \cos 3 t+i^{-1} \sin 3 t}=e^{-2 t}\binom{\cos 3 t+i \sin 3 t}{i \cos 3 t-\sin 3 t} \\
& =e^{-2 t}\left[\binom{\cos 3 t}{-\sin 3 t}+\binom{i \sin 3 t}{i \cos 3 t}\right] \\
& =e^{-2 t}\left[\binom{\cos 3 t}{-\sin 3 t}+i\binom{\sin 3 t}{\cos 3 t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { general solution: } \vec{x}(t)=e^{-2 t}\left(c_{1}\binom{\cos 3 t}{-\sin 3 t}+c_{2}\binom{\sin 3 t}{\cos 3 t}\right)
\end{aligned}
$$

2. $\mathbf{x}^{\prime}=\left(\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right) \mathbf{x} \quad, \quad \neq\left(\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right), \quad \operatorname{tr}(A)=4, \operatorname{det}(\nexists)=13$ characteristic polynomial
$\lambda_{1}=\frac{4+\sqrt{16-52}}{2}=2+3 i$

$$
\lambda^{2}-4 \lambda+13=0
$$

$$
\begin{aligned}
& \lambda_{1}=\frac{4+\sqrt{16-52}}{2}=2+3 i \\
& \lambda_{2}=\overline{\lambda_{1}}=2-3 i
\end{aligned}
$$

$$
\lambda_{1}=2+3 i, \quad \vec{v}=\binom{v_{1}}{v_{2}}
$$

$$
\begin{aligned}
& =2+3 i, \quad \vec{v}=\binom{v_{1}}{v_{2}}, \\
& (A-(2+3 i) I) \vec{v}=\overrightarrow{0} \text { or }\left(\begin{array}{cc}
2-(2+3 i) & 3 \\
-3 & 2-(2+3 i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or } \begin{gathered}
-3 i v_{1}+3 v_{2}= \\
v_{2}=i v_{1}
\end{gathered}
$$

$$
\vec{v}=\binom{v_{1}}{i v_{1}}=v_{1}\binom{1}{i} \Rightarrow \vec{x}=\binom{1}{i} \text { corresponds to } \lambda=2+3 i
$$

$$
\begin{aligned}
\vec{x} e^{\lambda t} & =\binom{1}{i} e^{(2+3 i) t}=\binom{1}{i} e^{2 t}(\cos 3 t+i \sin 3 t) \\
& =e^{2 t}\binom{\cos 3 t+i \sin 3 t}{i \cos 3 t+i^{2-1} \sin 3 t}=e^{2 t}\left[\binom{\cos 3 t}{-\sin 3 t}+i\binom{\sin 3 t}{\cos 3 t}\right] \\
\overrightarrow{x_{1}} & =\operatorname{Re}\left(\vec{x} e^{\lambda t}\right)=e^{2 t}\binom{\cos 3 t}{-\sin 3 t} \\
\vec{x}_{2} & =\operatorname{Im}\left(\vec{x} e^{\lambda t}\right)=e^{2 t}\binom{\sin 3 t}{\cos 3 t} \\
\text { General } & \text { solution: } \vec{x}(t)=e^{2 t}\left[c_{1}\binom{\cos 3 t}{-\sin 3 t}+c_{2}\binom{\sin 3 t}{\cos 3 t}\right]
\end{aligned}
$$

Phase portrait

$(0,0)$ is a spiral source, and it is unstable.
3. $x^{\prime}=\left(\begin{array}{rr}0 & -1 \\ 9 & 0\end{array}\right) x, \quad A=\left(\begin{array}{cc}0 & -1 \\ 9 & 0\end{array}\right), \quad \operatorname{tr}(A)=0, \quad \operatorname{det}(\cap)=9$ characteristic polynomial

$$
\lambda^{2}+9=0, \quad \lambda^{2}=-9
$$

$$
\lambda= \pm 3 i \text { eigenvalues. }
$$

$$
\begin{aligned}
& \lambda_{1}=3 i, \vec{V}=\binom{v_{1}}{v_{2}}, \quad(\nexists-(3 i) I) \vec{v}=\overrightarrow{0} \\
&\left(\begin{array}{cc}
-3 i & -1 \\
9 & -3 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow \quad-3 i v_{1}-v_{2}=0 \\
& v_{2}=-3 i v_{1}
\end{aligned}
$$

$$
\vec{v}=\binom{v_{1}}{-3 i v_{1}}=v_{1}\binom{1}{-3 i}, \vec{x}=\binom{1}{-3 i} \text { corresponds to } \lambda_{1}=3 i
$$

$$
\vec{x} e^{\lambda t}=\binom{1}{-3 i} e^{3 i t}=\binom{1}{-3 i}(\cos 3 t+i \sin 3 t)
$$

$$
=\binom{\cos 3 t+i \sin 3 t}{-3 i \cos 3 t-3 i^{2} \sin 3 t}=\binom{\cos 3 t}{3 \sin 3 t}+i\binom{\sin 3 t}{-3 \cos 3 t}
$$

General solution

$$
\vec{x}(t)=C_{1}\binom{\cos 3 t}{3 \sin 3 t}+C_{2}\binom{\sin 3 t}{-3 \cos 3 t}
$$

Phase portrait.

$(0,0)$ is a center. and it is stable

If \mathbf{A} has two complex conjugate eigenvalues λ_{1}, and λ_{2}, then

1. If $\Re\left(\lambda_{1}\right)>0$, then the point $(0,0)$ is a spiral source, and it is unstable.
2. If $\Re\left(\lambda_{1}\right)<0$, then the point $(0,0)$ is a spiral sink, and it is asymptotically stable.
3. If $\Re\left(\lambda_{1}\right)=0$, then the point $(0,0)$ is a center, and it is stable.
