$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

here $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right), \mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)$.
Let λ_{i} be an eigenvalue of the matrix \mathbf{A} of multiplicity $1<k \leq n$. Then there are k linearly independent eigenvectors $\mathbf{v}_{1}(t), \ldots, \mathbf{v}_{1}(t)$ corresponding to λ, if $k<n$. If $k=n$, then there is only one vector $\mathbf{v}_{1}(t)$ corresponding to λ. The remaining $n-1$ vectors corresponding to λ are solutions to the system

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{i+1}(t)=\mathbf{v}_{i}(t), \quad i=1,2, \ldots, n-1
$$

Vectors $\mathbf{v}_{2}(t), \ldots \mathbf{v}_{n-1}(t)$ are called generalized eigenvectors corresponding to λ.
Then the corresponding solutions of the system are $\mathbf{v}_{1}(t) e^{\lambda t}, t \mathbf{v}_{2}(t) e^{\lambda t}, \ldots, t^{k} \mathbf{v}_{k}(t) e^{\lambda t}$.

If $n=2$ and the matrix \mathbf{A} has one repeated eigenvalue λ with the corresponding eigenvector \mathbf{v}, then a generalized eigenvector \mathbf{w} is a solution of the system

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}
$$

and the general solution of the system is

$$
\mathbf{x}(t)=c_{1} \mathbf{v} e^{\lambda t}+c_{2}(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Example 1. Find the general solution of the system.

1. $\mathbf{x}^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) \mathbf{x}$
2. $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-7 & 1 \\ -4 & -3\end{array}\right) \mathbf{x}$

If \mathbf{A} has a repeated eigenvalue λ, then

1. If $\lambda>0$, then the point $(0,0)$ is an improper node, and it is unstable.
2. If $\lambda<0$, then the point $(0,0)$ is an improper node, and it is asymptotically stable.
