here $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right), \mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right), \mathbf{g}(\mathbf{t})=\left(\begin{array}{c}g_{1}(t) \\ g_{2}(t) \\ \ldots \\ g_{n}(t)\end{array}\right)$. We assume, that $\mathbf{A}(t)$ and $\mathbf{g}(t)$ are continuous on an open interval I.

The general solution of the system (1) is

$$
\mathbf{x}(t)=\mathbf{x}_{h}(t)+\mathbf{x}_{\mathbf{p}}(t)
$$

where $\mathbf{x}_{h}(t)$ is the general solution of the corresponding homogeneous system

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A}(t) \mathbf{x} \tag{2}
\end{equation*}
$$

and $\mathbf{x}_{p}(t)$ is a particular solution of the nonhomogeneous system (1).
There are several methods for determining the particular solution $\mathbf{x}_{p}(t)$.
Undetermined coefficients. This method is applicable only if the coefficient matrix $\mathbf{A}(t)$ is a constant matrix, and if the components of $\mathbf{g}(t)$ are polynomial, exponential, or sinusoidal functions, or sums or products of these. In these cases we can choose a particular solution of the same form.

NOTE: in the case of a nonhomogeneous term of the form $\mathbf{u} e^{\lambda t}$, where λ is a simple root of the characteristic polynomial, it is necessary to use $\mathbf{x}_{p}(t)=\mathbf{a} t e^{\lambda t}+\mathbf{b} e^{\lambda t}$, where \mathbf{a} and \mathbf{b} are determined by substituting into the differential system.
Example 1. Consider the nonhomogeneous linear system $\mathbf{x}^{\prime}=\left(\begin{array}{cc}2 & -1 \\ 3 & -2\end{array}\right) \mathbf{x}+\binom{e^{t}}{t}$

1. Find the general solution of the corresponding homogeneous system.
2. Find the general solution of the nonhomogeneous system.

Variation of parameters.

Definition. Suppose that $\mathbf{x}^{(1)}(t), \ldots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions for the system (2) on some interval I. Then the matrix

$$
\boldsymbol{\Psi}(t)=\left(\begin{array}{ccc}
x_{1}^{(1)}(t) & \cdots & x_{1}^{(n)}(t) \tag{3}\\
\vdots & & \vdots \\
x_{n}^{(1)}(t) & \cdots & x_{n}^{(n)}(t)
\end{array}\right)
$$

whose columns are the vectors $\mathbf{x}^{(1)}(t), \ldots, \mathbf{x}^{(n)}(t)$, is said to be a fundamental matrix of the system (2).
Note that $\operatorname{det} \boldsymbol{\Psi}(t) \neq 0$.
Then the general solution of the system (2) can be written as

$$
\mathbf{x}=\boldsymbol{\Psi}(t) \mathbf{c}
$$

where \mathbf{c} is a constant vector with arbitrary components c_{1}, \ldots, c_{n}.
Now we replace the constant vector \mathbf{c} by a vector function $\mathbf{u}(t)$. Thus, we assume that

$$
\mathbf{x}=\mathbf{\Psi}(t) \mathbf{u}(t)
$$

where $\mathbf{u}(t)$ is a vector to be found. Then we plug $\mathbf{x}(t)$ back into the system (1):

Thus,

$$
\mathbf{u}(t)=\int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) d t+\mathbf{c}
$$

and the general solution of the system (1) is

$$
\mathbf{x}(t)=\boldsymbol{\Psi}(t) \mathbf{c}+\boldsymbol{\Psi}(t) \int \boldsymbol{\Psi}^{-1}(t) \mathbf{g}(t) d t
$$

Example 2. Find the general solution of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
-4 & 2 \\
2 & -1
\end{array}\right) \mathbf{x}+\binom{t^{-1}}{2 t^{-1}+4}, \quad t>0
$$

Laplace Transform.

$$
\begin{gathered}
\mathcal{L}\{\mathbf{x}(t)\}=\mathbf{X}(s) \\
\mathcal{L}\left\{\mathbf{x}^{\prime}(t)\right\}=s \mathbf{X}(s)-\mathbf{x}(0)
\end{gathered}
$$

If $\mathcal{L}\{\mathbf{g}(t)\}=\mathbf{G}(s)$, then

$$
\mathbf{X}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{G}(s)
$$

Example 3. Find the general solution of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
1 & 1 \\
4 & -2
\end{array}\right) \mathbf{x}+\binom{e^{-2 t}}{-2 e^{t}}
$$

