1. Find the general solution of the equation/solve the initial value problem
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=t \cos (2 t)$
(b) $4 y^{\prime \prime}+y^{\prime}=4 x^{3}+48 x^{2}+1$
(c) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=1$
2. Find the general solution of the equation $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
3. A spring is stretch 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time. Find the quasifrequency of the motion.
4. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system. What is the resonance frequency for the system?
5. A mass weighing 4 lb stretches a spring 1.5 in . The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$,
(a) Formulate the initial value problem describing the motion of mass
(b) Solve the initial value problem.
(c) If the given external force is replaced by a force $4 \cos \omega t$ of frequency ω, find the value of ω for which resonance occurs.
6. Find the Laplace transform of the given function.
(a) $f(t)= \begin{cases}\frac{t}{2}, & 0 \leq t<6 \\ 3, & t \geq 6\end{cases}$
(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$
(c) $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau d \tau$
(d) $f(t)=t \cos 3 t$
(e) $f(t)=e^{t} \delta(t-1)$
7. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
8. Solve the initial value problem using the Laplace transform:
(a) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}, y(0)=y^{\prime}(0)=0\right.$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=g(t), y(0)=2, y^{\prime}(0)=-3$
9. Transform the given equation into a system of first order equation, then in matrix notation.
(a) $e^{t} y^{\prime \prime}+t^{2} y^{\prime}-\sin t y=3 \arctan t, \quad y(0)=5, \quad y^{\prime}(0)=3$.
(b) $y^{(4)}-\cos t y=0$.
10. Find A^{-1} if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right)$
11. Find $B A$ if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right), B=\left(\begin{array}{rr}i & 3 \\ 2 & -2 i\end{array}\right)$
12. Find all eigenvalues and eigenvectors of the martix

$$
\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

