- 1. Find the general solution of the equation/solve the initial value problem
 - (a) $y'' + 6y' + 9y = t\cos(2t)$
 - (b) $4y'' + y' = 4x^3 + 48x^2 + 1$
 - (c) $y'' + 2y' + y = 4e^{-t}, y(0) = 2, y'(0) = 1$

2. Find the general solution of the equation $y'' + 6y' + 9y = \frac{e^{-3x}}{1+2x}$

- 3. A spring is stretch 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of 10 cm/s, determine its position u at any time. Find the quasifrequency of the motion.
- 4. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At t = 0, an external force $F(t) = 2 \cos 2t$ lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 1 lb-sec/ft, find the steady-state solution for the system. What is the resonance frequency for the system?
- 5. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2\cos 3t$ lb,
 - (a) Formulate the initial value problem describing the motion of mass
 - (b) Solve the initial value problem.
 - (c) If the given external force is replaced by a force $4\cos\omega t$ of frequency ω , find the value of ω for which resonance occurs.
- 6. Find the Laplace transform of the given function.

(a)
$$f(t) = \begin{cases} \frac{t}{2}, & 0 \le t < 6\\ 3, & t \ge 6 \end{cases}$$

(b) $f(t) = (t^2 - 2t + 2)u_1(t)$
(c) $f(t) = \int_0^t (t - \tau)^2 \cos 2\tau d\tau$
(d) $f(t) = t \cos 3t$
(e) $f(t) = e^t \delta(t - 1)$

7. Find the inverse Laplace transform of the given function.

(a)
$$F(s) = \frac{2s+6}{s^2-4s+8}$$

(b) $F(s) = \frac{e^{-2s}}{s^2+s-2}$

- 8. Solve the initial value problem using the Laplace transform:
 - (a) $y'' + 4y = \begin{cases} t, & 0 \le t < 1\\ 1, & t \ge 1 \end{cases}$, y(0) = y'(0) = 0(b) $y'' + 2y' + 3y = \delta(t - 3\pi)$, y(0) = y'(0) = 0

- (c) y'' + 4y' + 4y = g(t), y(0) = 2, y'(0) = -3
- 9. Transform the given equation into a system of first order equation, then in matrix notation.
 - (a) $e^t y'' + t^2 y' \sin ty = 3 \arctan t$, y(0) = 5, y'(0) = 3. (b) $y^{(4)} - \cos ty = 0$.
- 10. Find A^{-1} if $A = \begin{pmatrix} 1+i & -1+2i \\ 3+2i & 2-i \end{pmatrix}$ 11. Find BA if $A = \begin{pmatrix} 1+i & -1+2i \\ 3+2i & 2-i \end{pmatrix}$, $B = \begin{pmatrix} i & 3 \\ 2 & -2i \end{pmatrix}$
- 12. Find all eigenvalues and eigenvectors of the martix

$$\left(\begin{array}{rrrr} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array}\right)$$