MATH 308-518,519,520 Spring 2013 Practice Test I

over sections 1.1-1.3, 2.1-2.6, 3.1

1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at the rate $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.
2. Suppose that a sum S_{0} is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r.
(b) Determine T if $r=7 \%$.
(c) Find the return rate that must be achieved if the initial investment is to double in 8 years.
3. An object with temperature 150° is placed in a freezer whose temperature is 30°. Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to 120° after 8 min , what will its temperature be after 18 min ?
(b) When will its temperature be 60° ?
4. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.
5. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value y_{0}.
6. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

7. Find the general solution to the equation

$$
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0
$$

8. Solve the initial value problem

$$
\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) d x+\left(x e^{x y} \cos (2 x)-3\right) d y=0, \quad y(0)=-1
$$

9. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

and then solve the equation.
10. Solve the initial value problem

$$
6 y^{\prime \prime}-5 y^{\prime}+y=0, \quad y(0)=4, y^{\prime}(0)=0
$$

11. Find the general solution to the equation

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

