MATH 308-518,519,520 Spring 2013 Practice Test I over sections 1.1-1.3, 2.1-2.6, 3.1

1. A large tank initially contains 10 L of fresh water. A brine containing 20 g/L of salt flows into the tank at a rate of 3 L/min. The solution inside the tank is kept well stirred and flows out of the tank at the rate 2 L/min. Determine the concentration of salt in the tank as a function of time.

2. Suppose that a sum S_0 is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r .
(b) Determine T if $r = 7\%$.
(c) Find the return rate that must be achieved if the initial investment is to double in 8 years.

An object with temperature 150^0 is placed in a freezer whose temperature is 30^0 . Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to 120^0 after 8 min, what will its temperature be after 18 min?
(b) When will its temperature be 60° ?

4. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$(4-t^2)y' + 2ty = 3t^2, \quad y(1) = -3$$

is certain to exist.

5. Solve the initial value problem

$$y' = \frac{t^2}{1 + t^3}, \quad y(0) = y_0$$

and determine how the interval in which the solution exists depends on the initial value y_0 .

6. Solve the following initial value problem

$$\sqrt{y}dt + (1+t)dy = 0$$
 $y(0) = 1$.

7. Find the general solution to the equation

$$(t^2 - 1)y' + 2ty + 3 = 0$$

8. Solve the initial value problem

$$(ye^{xy}\cos(2x) - 2e^{xy}\sin(2x) + 2x)dx + (xe^{xy}\cos(2x) - 3)dy = 0, \quad y(0) = -1$$

9. Find an integrating factor for the equation

$$(3xy + y^2) + (x^2 + xy)y' = 0$$

and then solve the equation.

10. Solve the initial value problem

$$6y'' - 5y' + y = 0, y(0) = 4, y'(0) = 0$$

11. Find the general solution to the equation

$$4y'' - 12y' + 9y = 0$$