1. Find the general solution of the given differential equation.
(a) $y^{\prime}+2 t y=2 t e^{-t^{2}}$.
(b) $y^{\prime}=\frac{3 x^{2}-1}{3+2 y}$.
(c) $y^{\prime}=2 x \sec y$.
(d) $t y^{\prime}+y=3 t \cos t, \quad t>0$.
2. Find the solution to the initial value problem
(a) $\frac{d y}{d x}=4 x^{3} y-y, \quad y(1)=-3$.
(b) $\frac{d y}{d x}+\frac{2 y}{t}=\frac{\cos t}{t^{2}} \quad y(1)=\frac{1}{2}, \quad t>0$.
(c) $2 \sqrt{x} \frac{d y}{d x}=\cos ^{2} y, \quad y(4)=\frac{\pi}{4}$.
3. Consider the initial value problem

$$
y^{\prime}+2 y=5-t, \quad y(0)=y_{0}
$$

Find the value y_{0} for which the solution touches, but does not cross the t-axis.
4. Consider a cascade of 2 tanks, with $V_{1}=100$ gal and $V_{2}=200$ gal the volume of brine of the 2 tanks. Each tan also initially contains 550 lb of salt. Pure water flows into the first tank at a rate of $5 \mathrm{gal} / \mathrm{min}$. The mixture flows from the first tank to the second one and flows out of the second tank at the same rate ($5 \mathrm{gal} / \mathrm{min}$).
Find the amount of salt in the 2 tanks at any time t.
5. A ball with mass 1 kg is thrown upward with initial velocity $20 \mathrm{~m} / \mathrm{s}$ from the roof of a building 50 m high. A force due to the resistance of the air of $v / 10$, where the velocity is measured in m / s, acts on the ball.
(a) Find the maximum height above the ground that the ball reaches
(b) Find the time that the ball hits the ground.
6. College graduate borrows $\$ 10,000$ to buy a car. The lender charges interest at an annual rate of 10%. Assuming that the interest is compounded continuously and that the borrows makes payment continuously at a constant annual rate k, determine the payment rate k that is required to pay off the loan in 5 years. Also determine how much interest is paid during the 5 -year period.
7. Food, initially at a temperature of $40^{\circ} \mathrm{F}$, was placed in an oven preheated to $350^{\circ} \mathrm{F}$. After 10 minutes in the oven, the food had warmed to $120^{\circ} \mathrm{F}$. After 20 minutes, the food was removed from the oven and allowed to cool at room temperature $\left(72^{\circ} \mathrm{F}\right)$. If the ideal serving temperature is $110^{\circ} \mathrm{F}$, when should the food be served?

