Math 308

- 1. Find the solution to the given initial value problem.
 - (a) y'' + 10y' + 25y = 0, y(0) = 2, y'(0) = -1. (b) y'' + 9y = 0, y(0) = -2, y'(0) = 3. (c) y'' - 2y' + 5y = 0 $y(\pi/2) = 0$, $y'(\pi/2) = 2$.
- 2. Use the method of reduction of order to find a fundamental set of solutions.

(a)
$$t^2y'' + 2ty' - 2y = 0$$
, $t > 0$, $y_1(t) = t$.
(b) $(t-1)y'' - ty' + y = 0$, $t > 0$, $y_1(t) = e^t$.

- 3. Verify that the functions y_1 and y_2 are solutions of the given differential equation. Do they constitute a fundamental set of solution
 - (a) $x^2y'' x(x+2)y' + (x+2)y = 0$, x > 0 $y_1(x) = x$, $y_2(x) = xe^x$. (b) y'' + 4y = 0, $y_1 = 2\sin x^2 - 1$, $y_2 = 3\sin^2 x - \cos^2 x - 1$.
- 4. If the Wronskian of f and g is $3e^{4t}$ and $f(t) = e^{2t}$, find g(t).
- 5. If the Wronskian of f and g is $t \cos t \sin t$, and if u = 2f 3g, and v = f + g, Find the Wronskian of u and v.
- 6. Find the general solution to the following equations
 - (a) y'' y' = t
 - (b) $y'' 2y' 3y = 3te^{2t}$.
 - (c) $y'' 2y' 3y = -3e^{-t}$.