1. Find the solution to the given initial value problem.
(a) $y^{\prime \prime}+4 y=t^{2}+3 e^{t}$,
$y(0)=0, \quad y^{\prime}(0)=2$.
(b) $y^{\prime \prime}+4 y=3 \sin 2 t, \quad y(0)=2, \quad y^{\prime}(0)=-1$.
(c) $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos 2 t \quad y(0)=1, y^{\prime}(0)=0$.
2. Determine a suitable form for $y(t)$ if the method of undetermined coefficients is to be used
(a) $y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin 3 t$.
(b) $y^{\prime \prime}+4 y=t^{2} \sin 2 t+(6 t+7) \cos 2 t$.
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}+2 e^{-t} \cos t+4 t^{2} e^{-t} \sin t$.
3. Use the method of variation of parameters to find a particular solution to
(a) $y^{\prime \prime}+y=\tan x$.
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}$.
(c) $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{\left(1+t^{2}\right)}$.
4. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in . then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
5. A series circuit has a capacitor of $10^{-5} \mathrm{~F}$, a resistor of $3 \times 10^{2} \Omega$, and an inductor of 0.2 H. The initial charge of the capacitor is $10^{-6} \mathrm{C}$ and there is no initial current. Find the charge Q on the capacitor at any time t.
6. A mass of 4 lb stretches a spring 1.5 in . The mass is displaced 2 in . in the positive direction from its equilibrium position and released with no initial velocity. Assuming that there is no damping and that the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$, formulate the initial value problem describing the motion of the mass.
