1. Express $f(t)$ in terms of the unit step function $u_{c}(t)$ and find its Laplace transform.
(a) $f(t)=\left\{\begin{array}{ll}t^{2}, & 0 \leq t<2 \\ e^{t}, & 2 \leq t\end{array}\right.$.
(b) $f(t)=\left\{\begin{array}{ll}2, & 0 \leq t<3 \\ 5 t^{2}, & 3 \leq t<8 \\ 3 \cos (t-8), & 8 \leq t\end{array}\right.$.
2. Find the inverse Laplace transform of the given functions
(a) $F(s)=\frac{s+3 s e^{-5 s}}{s^{2}-4 s+3}$
(b) $F(s)=\frac{(2 s-1) e^{-s}}{s^{2}-2 s+2}$.
3. Find the solution to the given initial value problem
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=\left\{\begin{array}{ll}1, & 0 \leq t<10 \\ 0, & 10 \leq t\end{array}, \quad y(0)=0, \quad y^{\prime}(0)=0\right.$.
(b) $y^{\prime \prime}+2 y^{\prime}+5 y=\sin (t)+u_{\pi}(t) \cos (t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0$.
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=\cos t+\delta(t-\pi / 2), \quad y(0)=0, \quad y^{\prime}(0)=0$.
(d) $y^{\prime \prime}-y^{\prime}-6 y=g(t), \quad y(0)=1, \quad y^{\prime}(0)=8$.
4. Find the inverse Laplace transform of the given function by using the convolution theorem.
(a) $F(s)=\frac{(3 s-3) e^{-5 s}}{s^{2}+2 s+10}$.
(b) $F(s)=\frac{1}{s^{4}\left(s^{2}-1\right)}$.
(c) $F(s)=\frac{s}{(s+1)^{2}(s+4)^{3}}$.
5. Find the Laplace transform of
(a) $f(t)=\int_{0}^{1}(t-\tau) e^{3 \tau} d \tau$
(b) $f(t)=\int_{0}^{1} e^{\tau} \sin (t-\tau) d \tau$
6. Transform the given equation into a system of first order equation, then in matrix notation.
(a) $e^{t} y^{\prime \prime}+t^{2} y^{\prime}-\sin t y=3 \arctan t, \quad y(0)=5, \quad y^{\prime}(0)=3$.
(b) $y^{(4)}-\cos t y=0$.
7. If $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 3 & 2 & -1 \\ -2 & 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}4 & -2 & 3 \\ -1 & 5 & 0 \\ 6 & 1 & 2\end{array}\right)$, find
(a) $3 A-2 B$
(b) $A B-B A$
8. Verify that the vector $X(t)=\left(\begin{array}{c}6 \\ -8 \\ -4\end{array}\right) e^{-t}+2\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right) e^{2 t}$ is solution to the system

$$
X^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

9. Verify that $\psi=\left(\begin{array}{cc}e^{-3 t} & e^{2 t} \\ -4 e^{-3 t} & e^{2 t}\end{array}\right)$ is solution to

$$
\psi^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \psi
$$

