1. Find the general solution of the system. Classify the critical point $(0,0)$ as to type, determine whether it is stable or unstable, sketch the phase portrait.
(a) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \mathrm{x}, \quad A=\left(\begin{array}{cc}3 & -2 \\ 2 & -2\end{array}\right), \operatorname{tr}(A)=3-2=1$, $\quad \operatorname{det} A=-6+4=-2$
characteristic equation

$$
\begin{aligned}
& \operatorname{det}(\lambda-\lambda I)=0 \\
& \lambda^{2}-(\operatorname{tr} A) \lambda+(\operatorname{det} A)=0 \\
& \lambda^{2}-\lambda-2=0 \\
& (\lambda-2)(\lambda+1)=0 \\
& \lambda_{1}=2, \lambda_{2}=-1 \text { eigenvalues. }
\end{aligned}
$$

Eigen vectors
$\underline{\lambda_{1}=2}, \vec{v}=\binom{v_{1}}{v_{2}}$ it is a solution of the system

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(v_{2}\right), 2 I
\end{array}\right) \vec{v}=\overrightarrow{0} \quad \text { or } \quad\left(\begin{array}{cc}
3-2 & -2 \\
2 & -2-2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \\
& \left(\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or }\left\{\begin{array}{l}
v_{1}-2 v_{2}=0 \\
2 v_{1}-4 v_{2}=0
\end{array} \Rightarrow v_{1}=2 v_{2}\right.
\end{aligned}
$$

update $\vec{v}=\binom{v_{1}}{v_{2}}=\binom{2 v_{2}}{v_{2}} \stackrel{v_{2}=1}{=}\binom{2}{1}$ corresponds $\quad \lambda=2$
$\lambda_{2}=-1 \quad \vec{w}=\binom{w_{1}}{w_{2}}$, it is a solution of $(A-(-1) I) \vec{w}=\overrightarrow{0}$ or $(A+I) \vec{w}=\overrightarrow{0}$

$$
\begin{gathered}
\left(\begin{array}{cc}
3+1 & -2 \\
2 & -2+1
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{cc}
4 & -2 \\
2 & -1
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \\
\left\{\begin{array}{l}
4 w_{1}-2 w_{2}=0 \quad \Rightarrow \quad w_{2}=2 w_{1} \\
2 w_{1}-w_{2}=0 \quad
\end{array}\right.
\end{gathered}
$$

update $\vec{w}=\binom{w_{1}}{w_{2}}=\binom{w_{1}}{2 w_{1}} \stackrel{w_{1}=1}{\binom{1}{2} \text { corresponds to } \lambda=-1}$
General solution:

$$
\vec{x}(t)=c_{1}\binom{2}{1} e^{2 t}+c_{2}\binom{1}{2} e^{-t} \quad\binom{x_{1}(t)}{x_{2}(t)}=\binom{2 c_{1} e^{2 t}+c_{2} e^{-t}}{c_{1} e^{2 t}+2 c_{2} e^{-t}}
$$

Phase portrait $\left\{\begin{array}{l}x_{1}(t)=2 c_{1} e^{2 t}+c_{2} e^{-t} \\ x_{2}(t)=c_{1} e^{2 t}+2 c_{2} e^{-t}\end{array}\right.$
$(0,0)$ is a saddle point it is unstable.
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right) \mathbf{x}$

Characteristic equation

$$
\begin{aligned}
& \lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} \lambda=0 \\
& \lambda^{2}+3 \lambda+2=0 \\
& (\lambda+2)(\lambda+1)=0 \\
& \hline \lambda_{1}=-2 \mid \lambda_{2}=-1 \quad \text { eigenvalues. }
\end{aligned}
$$

Eigenvectors
$\underline{\lambda_{1}=-2}, \vec{v}=\binom{v_{1}}{v_{2}}$, it is a solution $(\lambda-(-2) I) \vec{v}=\overrightarrow{0}$ or $(A+2 I) \vec{v}=\overrightarrow{0}$

$$
\left(\begin{array}{cc}
1+2 & -2 \\
3 & -4+2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

$$
\left(\begin{array}{cc}
3 & -2 \\
3 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \quad \text { or } \quad \begin{gathered}
3 v_{1}-2 v_{2}=0 \\
3 v_{1}=2 v_{2}
\end{gathered} \text { or } v_{1}=\frac{2 v_{2}}{3}
$$

$\vec{v}=\binom{v_{1}}{v_{2}}=\binom{\frac{2 v_{2}}{3}}{v_{2}} \stackrel{v_{2}=3}{=}\binom{2}{3}$ corresponds to $\lambda_{1}=-2$
$\lambda_{2}=-1, \vec{w}=\binom{w_{1}}{w_{2}}$, it is a solution of $(A-(-1) I) \vec{w}=\overrightarrow{0}$ or $(A+I) \vec{w}=\overrightarrow{0}$

$$
\left(\begin{array}{cc}
1+1 & -2 \\
3 & -4+1
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{cc}
2 & -2 \\
3 & -3
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or } \quad \begin{aligned}
& 2 w_{1}-2 w_{2}=0 \\
& 3 w_{1}-3 w_{2}=0 \\
& \text { or } w_{1}=w_{2}
\end{aligned}
$$

$\vec{w}=\binom{w_{1}}{w_{2}}=\binom{w_{1}}{w_{1}} \stackrel{w_{1}=1}{=}\binom{1}{1}$ corresponds to $\lambda_{2}=-1$
General solution $\vec{x}(t)=c_{1}\binom{2}{3} e^{-2 t}+c_{2}\binom{1}{1} e^{-t}$

(c) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right) \mathbf{x} \quad, \quad A=\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right)$,

$$
\operatorname{tr}(A)=5+1=6
$$

$$
\operatorname{det}(A)=5+3=8
$$

Characteristic equation

$$
\begin{aligned}
& \lambda^{2}-6 \lambda+8=0 \\
& (\lambda-4)(\lambda-2)=0
\end{aligned}
$$

$$
\lambda_{1}=4, \lambda_{2}=2 \text { eigenvalues }
$$

Eigenvectors $\quad \lambda_{1}=4, \vec{v}=\binom{v_{1}}{v_{2}}$ is a solution of $(A-4 I) \vec{v}=\overrightarrow{0}$

$$
\left(\begin{array}{cc}
5-4 & -1 \\
3 & 1-4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{cc}
1 & -1 \\
3 & -3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or } \begin{aligned}
& v_{1}-v_{2}=0 \\
& v_{1}=v_{2}
\end{aligned}
$$

$$
\vec{v}=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{v_{1}} \underline{v_{1}=1}\binom{1}{1} \text { corresponds to } \lambda_{1}=4
$$

$\lambda_{2}=2 \quad \vec{w}=\binom{w_{1}}{w_{2}}$ is a solution of $\quad(A-2 I) \vec{w}=\overrightarrow{0}$

$$
\left(\begin{array}{cc}
5-2 & -1 \\
3 & 1-2
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{cc}
3 & -1 \\
3 & -1
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \quad \text { or } \quad 3 w_{1}-w_{2}=0
$$

$\vec{W}=\binom{w_{1}}{w_{2}}=\binom{w_{1}}{3 w_{1}} \stackrel{w_{1}=1}{=}\binom{1}{3}$ corresponds to $\lambda_{2}=2$
General solution: $\quad \vec{x}(t)=C_{1}\binom{1}{1} e^{4 t}+C_{2}\binom{1}{3} e^{2 t}$
Phase portrait:

(d) $\left.x^{\prime}=\left(\begin{array}{cc}2 & -5 \\ \sqrt{1} & -2\end{array}\right) x, \quad A=\left(\begin{array}{cc}2 & -5 \\ 1 & -2\end{array}\right), \begin{array}{l}\operatorname{tr} \boldsymbol{A}=0 \\ \operatorname{det} A=-4+5\end{array}\right)=1$

Characteristic equation

$$
\lambda^{2}+1=0
$$

$$
\lambda^{2}=-1 \text { or } \lambda= \pm i
$$

Eigenvectors $\lambda_{1}=i, \vec{v}=\binom{v_{1}}{v_{2}}$ is a solution of $(A-i I) \vec{v}=\overrightarrow{0}$

$$
\begin{aligned}
&\left(\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or }\left\{\begin{array}{l}
(2-i) v_{1}-5 v_{2}=0 \\
v_{1}-(2+i) v_{2}=0 \Rightarrow
\end{array}\right. \\
& {\left[\begin{array} { l }
{ v _ { 1 } - (2 + i) v _ { 2 }] (2 - i) = 0 \Rightarrow }
\end{array} \left(\begin{array}{l}
(2-i) v_{2} \\
\\
\\
(2-i) v_{1}-\left(2_{1}^{2}-i^{2}\right) v_{2}=0 \\
v_{2}=0
\end{array}\right.\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=\binom{v_{1}}{v_{2}}=\binom{(2+i) v_{2}}{v_{2}} \stackrel{v_{2}=1}{=}\binom{2+i}{1} \text { corresponds to } \lambda_{1}=i \\
& \vec{v} e^{\lambda t}=\binom{2+i}{1} e^{i t}=\binom{2+i}{1}(\cos t+i \sin t)=\binom{(2+i)(\cos t+i \sin t)}{\cos t+i \sin t} \\
&=\left(\begin{array}{c}
2 \cos t+\frac{2 i \sin t+i \cos t+i^{2} \sin t}{\cos t+i \sin t}
\end{array}\right)=\binom{2 \cos t-\sin t+i(2 \sin t+\cos t)}{\cos t+i \sin t} \\
&=\binom{2 \cos t-\sin t}{\cos t}+\binom{i(2 \sin t+\cos t)}{i \sin t}=\binom{2 \cos t-\sin t}{\cos t}+i\binom{2 \sin t+\cos t}{\sin t}
\end{aligned}
$$

General solution $\vec{x}(t)=c_{1} \operatorname{Re}\left(\vec{v} e^{\lambda t}\right)+c_{2} \operatorname{Im}\left(\vec{v} e^{\lambda t}\right)$

$$
\vec{x}(t)=C_{1}\binom{2 \cos t-\sin t}{\cos t}+C_{2}\binom{2 \sin t+\cos t}{\sin t}
$$

Phase portrait

$(0,0)$ is a center it is stable
(e) $\mathrm{x}^{\prime}=\begin{array}{ll}\left.\begin{array}{ll}1 & -5 \\ \sqrt{1} & -3\end{array}\right) \mathrm{x}, \quad \mathrm{C}=\left(\begin{array}{ll}1 & -5 \\ 1 & -3\end{array}\right), ~ \\ & \end{array}$

Characteristic equation

$$
\begin{aligned}
& \operatorname{tr}(A)=1-3=-2 \\
& \operatorname{det}(A)=-3+5=2 \\
& \lambda^{2}+2 \lambda+2=0 \\
& \lambda_{1}=\frac{-2+\sqrt{4-8}}{2}=\frac{-2+\sqrt{-4}}{2}=\frac{-2+2 i}{2}=-1+i \\
& \lambda_{2}=\bar{\lambda}_{1}=-1-i
\end{aligned}
$$

Eigenvectors $\vec{v}=\binom{v_{1}}{v_{2}}$ is a solution of $\quad(\lambda-(-1+i) I) \vec{v}=\overrightarrow{0}$

$$
\begin{gathered}
\left(\begin{array}{cc}
1-(-1+i) & -5 \\
1 & -3-(-1+i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \\
\vec{v}=\left(\begin{array}{c}
2-i \\
1
\end{array} \begin{array}{c}
-5 \\
v_{1} \\
v_{2}
\end{array}\right)=\binom{(2+i) v_{2}}{v_{2}} \stackrel{v_{1}}{v_{2}} \boldsymbol{v _ { 2 } = 1}\binom{2+i}{1}=\binom{0}{0} \text { or }\left\{\begin{array}{c}
(2-i) v_{1}-5 v_{2}=0 \\
v_{1}-(2+i) v_{2}=0
\end{array} \Rightarrow v_{1}=(2+i) v_{2}\right. \\
\vec{v} e^{\lambda t}=\binom{2+i}{1} e^{(-1+i) t}=\binom{2+i}{1} e^{-t}(\cos t+i \sin t) \\
=e^{t}\left[\binom{2 \cos t-\sin t}{\cos t}+i\binom{2 \sin t+\cos t}{\sin t}\right] e^{a+i b}=e^{a}(\cos b+i \sin b) \\
\text { General solution }\left[\vec{x}(t)=e^{-t}\left[c_{1}\binom{2 \cos t-\sin t}{\cos t}+c_{2}\binom{2 \sin t+\cos t}{\sin t}\right]\right.
\end{gathered}
$$

Phase portrait

$(0,0)$ is a spiral sink it is asymptotically stable
(f) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}(\sqrt[3]{\sqrt[4]{4}} & -2 \\ \text { CW }\end{array}\right) \mathbf{x}$

$$
A=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right),
$$

$$
\begin{aligned}
& \operatorname{tr}(A)=3-1=2 \\
& \operatorname{det}(\pi)=-3+8=5
\end{aligned}
$$

Characteristic equation:

$$
\begin{aligned}
& \lambda^{2}-2 \lambda+5=0 \\
& \lambda_{1}=\frac{2+\sqrt{4-20}}{2}=\frac{2+\sqrt{-16}}{2}=\frac{2+4 i}{2}=1+2 i \\
& \lambda_{2}=\overline{\lambda_{1}}=1-2 i
\end{aligned}
$$

Eigen vector

$$
\vec{v}=\binom{v_{1}}{v_{2}}
$$

$$
(A-(1+2 i) I) \vec{v}=\overrightarrow{0}
$$

$$
\left(\begin{array}{cc}
3-(1+2 i) & -2 \\
4 & -1-(1+2 i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

$$
\left(\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or }\left\{\begin{array}{c}
(2-2 i) v_{1}-2 v_{2}=0 \Rightarrow v_{2}=(1-i) v_{1} \\
4 v_{1}-(2+2 i) v_{2}=0
\end{array}\right.
$$

$$
\vec{v}=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{(1-i) v_{1}} \stackrel{v_{1}=1}{=}\binom{1}{1-i}
$$

$\vec{v} e^{\lambda t}=\binom{1}{1-i} e^{(1+2 i) t}=\binom{1}{1-i} e^{t}(\cos 2 t+i \sin 2 t)$

$$
=e^{t}\binom{\cos 2 t+i \sin 2 t}{(1-i)(\cos 2 t+i \sin 2 t)}=e^{t}\binom{\cos 2 t+i \sin 2 t}{\cos 2 t+i \sin 2 t-i \cos 2 t-i^{2} \sin 2 t}
$$

$=e^{t}\binom{\cos 2 t+i \sin 2 t}{\cos 2 t+\sin 2 t+i(\sin 2 t-\cos 2 t)}$

$$
=e^{t}\left[\binom{\cos 2 t}{\cos 2 t+\sin 2 t}+i\binom{\sin 2 t}{\sin 2 t-\cos 2 t}\right]
$$

General solution $\quad \vec{x}(t)=e^{t}\left[c_{1}\binom{\cos 2 t}{\cos 2 t+\sin 2 t}+c_{2}\binom{\sin 2 t}{\sin 2 t-\cos 2 t}\right]$
phase portrait

$(0,0)$ is a spiral source it is unstable
2. Solve the initial value problem.

$$
\begin{aligned}
& \text { (a) } \mathbf{x}^{\prime}=\left(\begin{array}{rr}
5 & -1 \\
3 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{2}{-1} \\
& \text { General solution } \quad(\text { free } \# \mid c) \\
& \vec{x}(t)=c_{1}\binom{1}{1} e^{4 t}+c_{2}\binom{1}{3} e^{2 t} \\
& \vec{x}(0)=c_{1}\binom{1}{1}+c_{2}\binom{1}{3}=\binom{2}{-1} \\
& \qquad\left\{\begin{array}{l}
c_{1}+c_{2}=2 \Rightarrow c_{1}=2-c_{2}=2-\left(-\frac{3}{2}\right)=\frac{7}{2} \\
\frac{c_{1}+3 c_{2}=-1}{c_{2}-3 c_{2}=2-(-1)} \Rightarrow \quad-2 c_{2}=3 \Rightarrow c_{2}=-\frac{3}{2}
\end{array}\right. \\
& \text { or } \vec{x}(t)=\frac{7}{2}\binom{1}{1} e^{4 t}-\frac{3}{2}\binom{1}{3} e^{2 t} \\
& \left\{\begin{array}{l}
x_{1}(t)=\frac{7}{2} e^{4 t}-\frac{3}{2} e^{2 t} \\
x_{2}(t)=\frac{7}{2} e^{4 t}-\frac{9}{2} e^{2 t}
\end{array}\right.
\end{aligned}
$$

$\begin{aligned} & \begin{array}{cc}3 & 1\end{array} \\ \text { (b) } \mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & -5 \\ 1 & -3\end{array}\right) \mathbf{x}, & \mathbf{x}(0)=\binom{1}{1}^{\prime}\end{aligned}$
$\frac{\text { General solution }}{\text { (see \#le) }} \vec{x}(t)=e^{-t}\left[c_{1}\binom{2 \cos t-\sin t}{\cos t}+c_{2}\binom{2 \sin t+\cos t}{\sin t}\right]$

$$
\vec{x}(0)=c_{1}\binom{2 \cos ^{1} 0^{1}-\sin 0^{\circ}}{\cos 0^{1}}+c_{2}\binom{2 \sin 0^{0}+\cos ^{2} 0^{1}}{\sin 0^{\circ}}=\binom{1}{1}
$$

$$
c_{1}\binom{2}{1}+c_{2}\binom{1}{0}=\binom{1}{1}
$$

$$
\left\{\begin{array}{l}
2 C_{1}+c_{2}=1 \Rightarrow c_{2}=1-2 c_{1}=1-2=-1 \\
c_{1}=1
\end{array}\right.
$$

$\vec{x}(t)=e^{-t}\left[\binom{2 \cos t-\sin t}{\cos t}-\binom{2 \sin t+\cos t}{\sin t}\right]$

$$
=e^{-t}\binom{2 \cos t-\sin t-2 \sin t-\cos t}{\cos t-\sin t}
$$

$=e^{-t}\binom{\cos t-3 \sin t}{\cos t-\sin t}$ or $\left\{\begin{array}{l}x_{1}(t)=e^{-t}(\cos t-3 \sin t) \\ x_{2}(t)=e^{-t}(\cos t-\sin t)\end{array}\right.$
3. Find the general solution of the system.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{rrr}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right) \mathbf{x}$.

Characteristic equation: $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
& =(1-\lambda)(2-\lambda)(-1-\lambda)+2+12-3(1+\lambda)+(1-\lambda) 8(2-\lambda) \\
& =-(1-\lambda)(2-\lambda)(1+\lambda)+14-3-3 \lambda+1-16+8 \lambda-\lambda \\
& =-\left(1-\lambda^{2}\right)(2-\lambda)-4+4 \lambda \\
& =-2+\lambda+2 \lambda^{2}-\lambda^{3}-4+4 \lambda \\
& \begin{array}{c}
=-\lambda^{3}+2 \lambda^{2}+5 \lambda-6=0 \\
\lambda^{3}-2 \lambda^{2}-5 \lambda+6=0
\end{array} \\
& (\lambda-1)\left(\lambda^{2}-\lambda-6\right)=0 \\
& (\lambda-1)(\lambda-3)(\lambda+2)=0 \\
& \lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=-2 \\
& \begin{array}{c}
\lambda-1 \begin{array}{l}
\lambda^{2}-\lambda-6 \\
\frac{\lambda^{3}-2 \lambda^{2}-5 \lambda+6}{\lambda^{2}-\lambda^{2}-5 \lambda} \\
\frac{-\lambda^{2}+\lambda}{-6 \lambda+6}
\end{array}
\end{array}
\end{aligned}
$$

eigen values.
Eigenvectors $\quad \lambda_{1}=1, \quad \vec{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ is a solution of $(A-I) \vec{v}=\overrightarrow{0}$

$$
\begin{aligned}
& \begin{aligned}
\left(\begin{array}{ccc}
1-1 & -1 & 4 \\
3 & 2-1 & -1 \\
2 & 1 & -1-1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { or }\left(\begin{array}{ccc}
0 & -1 & 4 \\
3 & 1 & -1 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{l}
-v_{2}+4 v_{3}=0
\end{array}\right. & \Longrightarrow v_{2}=4 v_{3}
\end{aligned} \\
& \left\{\begin{array}{l}
-v_{2}+4 v_{3}=0 \Longrightarrow v_{2}=4 v_{3} \\
3 v_{1}+v_{2}-v_{3}=0 \\
2 v_{1}+v_{2}-2 v_{3}=0
\end{array}\right. \\
& 3 v_{1}+4 v_{3}-v_{3}=0 \\
& 3 v_{1}+3 v_{3}=0 \Rightarrow v_{1}=-v_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { corresponds to } \lambda_{2}=3 \\
& \left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \text { corresponds to } \lambda=-2 \\
& \text { General solution: } \vec{x}(t)=C_{1}\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right) e^{t}+C_{2}\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right) e^{3 t}+C_{3}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) e^{-2 t}
\end{aligned}
$$

(b) $\mathbf{x}^{\prime}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1\end{array}\right) \mathbf{x}$.

Eigenvalues: $\quad \lambda_{1}=1, \quad \lambda_{2}=1+2 i, \quad \lambda_{3}=1-2 i$
Eigenvectors:

$$
\begin{gathered}
\vec{v}=\left(\begin{array}{r}
2 \\
-3 \\
2
\end{array}\right), \lambda_{1}=1 \\
\vec{W}=\left(\begin{array}{r}
0 \\
1 \\
-i
\end{array}\right), \lambda=1+2 i
\end{gathered}
$$

$$
\begin{aligned}
\vec{w} e^{\lambda_{2} t} & =\left(\begin{array}{c}
0 \\
1 \\
-i
\end{array}\right) e^{(1+2 i) t}=\left(\begin{array}{c}
0 \\
1 \\
-i
\end{array}\right) e^{t}(\cos 2 t+i \sin 2 t) \\
= & e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t+i \sin 2 t \\
-i \cos 2 t-i^{-1} \sin 2 t
\end{array}\right)=e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t+i \sin 2 t \\
\sin 2 t-i \cos 2 t
\end{array}\right) \\
& =e^{t}\left[\left(\begin{array}{c}
0 \\
\cos 2 t \\
\sin 2 t
\end{array}\right)+i\left(\begin{array}{c}
0 \\
\sin 2 t \\
\cos 2 t
\end{array}\right)\right]
\end{aligned}
$$

General solution

$$
\vec{x}(t)=c_{1} e^{t}\left(\begin{array}{c}
2 \\
-3 \\
2
\end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}
0 \\
\cos 2 t \\
\sin 2 t
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}
0 \\
\sin 2 t \\
\cos 2 t
\end{array}\right)
$$

