1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at the rate $2 \mathrm{~L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.

$$
\begin{aligned}
& q(0)=0 \quad \begin{array}{l}
q(t) \text { is the mass@tank@time } t \\
d q \text { ratein-rate out }
\end{array} \\
& \xrightarrow[34 / \text { min }]{20 \mathrm{~g} / \mathrm{L}} \underset{\sim}{24 / \mathrm{min}} \\
& \frac{d q}{d t}=\text { ratein }- \text { rate out } \\
& =20(3)-(2) \frac{q(t)}{10+(3-2) t} \\
& \begin{array}{l}
\frac{d q}{d t}=60-\frac{2 q}{10+t}, \quad q(0)=0 \\
\frac{d q}{d t}+\frac{2}{10+t} q=60 \quad \text { linear, } P(t)=\frac{2}{10+t}, Q(t)=60
\end{array} \\
& \text { Integrating factor } \mu:\left\{\begin{array}{l}
\frac{d \mu}{d t}=\frac{2}{10+t} \mu \quad \text { separable } \\
\int \frac{d \mu}{\mu}=\int \frac{2}{10+t} d t \\
\ln |\mu|=(2) \ln \mid[0+t \mid
\end{array} \quad \Rightarrow(t)=(10+t)^{2}\right. \\
& \mu(t) q(t)=\int 60 \mu \mu(t) d t \\
& (10+t)^{2} q(t)=60 \int(10+t)^{2} d t \\
& \frac{(10+t)^{2} g(t)}{(10+t)^{2}}=\frac{20(10+t)^{3}+C}{(10+t)^{2}} \\
& q(t)=20(10+t)+\frac{c}{(10+t)^{2}} \\
& q(0)=200+\frac{c}{100}=0 \rightarrow e=-20000 \\
& \begin{array}{l}
q(t)=20(10+t)-\frac{20000}{(10+t)^{2}} \text { - mass } \\
\frac{q(t)}{10+t}=20-\frac{20000}{(10+t)^{3}} \text { concentration }
\end{array}
\end{aligned}
$$

2. An object with temperature $150^{\circ}$ is placed in a freezer whose temperature is $30^{\circ}$. Assume that the temperature of the freezer remains essentially constant.
(a) If the object is cooled to $120^{\circ}$ after 8 min , what will its temperature be after 18 min ?
(b) When will its temperature be $60^{\circ}$ ?
$T(t)$ is the temperature of the object ca ump $:$.

$$
\begin{aligned}
& \frac{d T}{d t}=k(M-T), \\
& M=30
\end{aligned}
$$

$$
\begin{array}{ll}
T(0)=150, T(8)=120, & T(18)=? \\
& \text { time } t \text { suck that } T(t)=60
\end{array}
$$

$$
\frac{d t \frac{d T}{d t}}{T-30}=\frac{-k(-30+T)}{T \cdot 30} d t \rightarrow \int \frac{d T}{T-30}=\int-k d t
$$

$$
\begin{aligned}
& |T-30|=-k t+c \\
& T-30=c_{1} e^{-k t}, \quad c_{1}=e^{c}
\end{aligned}
$$

$$
\tau=30+c_{1} e^{-k t}
$$

$$
\begin{gathered}
T(0)=30+c_{1}=150 \\
c_{1}=120
\end{gathered} \rightarrow T(t)=30+120 e^{-t t}
$$

$$
T(8)=30+120 e^{-8 k}=120
$$

$$
\begin{gathered}
12 \phi e^{-8 t}=9 \varnothing \\
e^{-8 t}=\frac{9}{12}=\frac{3}{4} \Rightarrow-8 t=\ln \frac{3}{4} \Rightarrow k=-\frac{1}{8} \ln \frac{3}{4} \\
T(t)=30+120 e^{\frac{t}{8} \ln \frac{3}{4}}
\end{gathered}
$$

$$
\begin{aligned}
& T(t)=30+120 e \\
& T(18)=30+120 e^{\frac{12}{8} \ln \frac{2}{4}}
\end{aligned}
$$

$$
\begin{array}{r}
T(18)=30+120 e^{\frac{1}{8} \ln \frac{1}{4}} \\
\text { Find } t \text { such that } T(t)=30+120 e^{\frac{t}{8} \ln \frac{3}{4}}=60 \\
120 e^{\frac{t}{8} \ln \frac{3}{4}}=30
\end{array}
$$

$$
e^{\frac{t}{8} \ln \frac{3}{4}}=\frac{1}{4}
$$

$$
\frac{t}{8} \ln \frac{3}{4}=\ln \frac{1}{4}
$$

$$
t=8 \frac{\ln \frac{1}{4}}{\ln \frac{3}{4}}
$$

3. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.
is certain to exist.

$$
\frac{\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}}{\left(4-t^{2}\right)}, \quad y(1)=-3
$$

$$
y^{\prime}+\frac{2 t}{4-t^{2}} y=\frac{3 t^{2}}{4-t^{2}}, \quad 4-t^{2} \neq 0, \quad t \neq \pm 2
$$


$(-2,2)$

| $\sqrt{t} \rightarrow t \geqslant 0$ | $\cot t=\frac{\cos t}{\sin t} \rightarrow t \neq 0, \pm \pi, \pm 2 \pi, \pm 3 \pi \ldots$ |
| :--- | :--- |
| $\ln t \rightarrow t>0$ | $\rightarrow t>0, t \neq 1$ |$| \begin{array}{cl}1 & \tan t=\frac{\sin t}{\cos t} \Rightarrow t \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots\end{array}$

4. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value $y_{0}$.
4. Solve the initial value problem

$$
y^{\prime}+p(t) y=q(t)
$$

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value $y_{0}$.

$$
\begin{array}{r}
q(t)=f(y, t)=\frac{t^{2}}{1+t^{3}}, \\
\text { continuous for all } \quad \frac{1+-1}{-1} 0
\end{array}
$$

$$
\frac{d y}{d t}=\frac{t^{2}}{1+t^{3}} \Rightarrow d y=\frac{t^{2}}{1+t^{3}} d t
$$

$$
y=\frac{1}{3} \ln \left|1+t^{3}\right|+c
$$

$$
\begin{aligned}
& y(0)=\frac{1}{3} \ln 1+c=c=y: \\
& \text { value problem: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { solution of the initial value problem: } \\
& \qquad y=\frac{1}{3} \ln \left|1+t^{3}\right|+y_{0} \quad \text { exists for all } y_{0}
\end{aligned}
$$

5. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

5. Solve the following initial value problem

$$
\begin{aligned}
& \text { (13)t } t+(1+t) d y=0 \quad y(0)=1 \text {. } \\
& \text { not linear } \\
& \text { not exact } \\
& \text { separable. } \\
& \sqrt{y} d t=-(1+t) d y \\
& \int \frac{d y}{\sqrt{y}}=-\int \frac{d t}{1+t} \\
& \frac{y^{1 / 2}}{1 / 2}=-\ln |1+t|+c \\
& 2 \sqrt{y}=c-\ln |1+t| \\
& \sqrt{y}=\frac{c-\ln |1+t|}{2} \quad \text { plug in } \quad y=1 \text { and } t=0 \\
& 1=\frac{c-\ln \mid}{2} \text { or } c=2 \\
& \quad \sqrt{y}=\frac{2-\ln |1+t|}{2} \text { solution of the } \\
& \text { initial value problem. }
\end{aligned}
$$

6. Find the general solution to the equation

$$
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0
$$

6. Find the general solution of the equation

$$
\begin{gathered}
\left(t^{2}-1\right) y^{\prime}+2 t y+3=0 \quad \text { linear } \\
y^{\prime}+\frac{2 t}{t^{2}-1} y+\frac{3}{t^{2}-1}=0 \\
p(t)=\frac{2 t}{t^{2}-1}, q(t)=-\frac{3}{t^{2}-1} \\
\frac{d \mu}{d t}=\frac{2 t}{t^{2}-1} \mu \Rightarrow \mu=t^{2}-1 \\
\left(t^{2}-1\right) y=\int-\frac{3}{t^{2}-1}\left(t^{2}-1\right) d t=-3 t+C \\
y=-\frac{3 t}{t^{2}-1}+\frac{C}{t^{2}-1}
\end{gathered}
$$

7. Given the differential equation

$$
\frac{d y}{d t}=7 y-y^{2}-10
$$

(a) Find the equilibrium solutions
(b) Sketch the phase line and determine whether the equilibrium solutions are stable, unstable, or semistable
(c) Graph some solutions
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty<y_{0}<\infty$, find the limit of $y(t)$ when $t \rightarrow \infty$
(e) Solve the equation


$$
\text { 76) } f(y)=7 y-y^{2}-10 \quad\left\{\begin{array}{l}
f(0)=-10<0 \\
f(3)=7(3)-9-10>0 \\
f(6)=42-36-10<0
\end{array}\right.
$$



$$
\begin{aligned}
& \frac{d y}{d t}=7 y-y^{2}-10 \\
& \frac{d y}{d t}=-(y-5)(y-2) \\
& \frac{d y}{(y-5)(y-2)}=-d t
\end{aligned}
$$

$\frac{1}{3}[\ln |y-5|-\ln |y-2|]=-t+C$
$\ln \left|\frac{y-5}{y-2}\right|=-3 t+c_{1}$

$$
(u v w)^{\prime}=u^{\prime} v w+u v^{\prime} w+u v w^{\prime}
$$

8. Solve the initial value problem

$$
\begin{aligned}
& \underbrace{\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) d x+\underbrace{\left(x e^{x y} \cos (2 x)-3\right)}_{N} d y=0, \quad y(0)=-1}_{M} \\
& \frac{\partial M}{\partial y}=e^{x y} \cos (2 x)+y e^{x y}(x) \cos (2 x)-2 e^{x y}(x) \min (2 x) \\
& \frac{\partial N}{\partial x}=e^{x y} \cos (2 x)+x e^{x y} y \cos (2 x)+x e^{x y}(-2) \sin (2 x) \text { match } \\
& \text { exact } \\
& F(x, y):\left\{\begin{array}{l}
\left.\frac{\partial F}{\partial x}=\sqrt{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right) \\
\int \frac{\partial F}{\partial y} d y\left[\left(e^{x y} \cos (2 x)-3\right] d y\right.
\end{array} \int e^{x y} d y=\frac{1}{x} e^{x y}+c\right. \\
& F(x, y)=\frac{x}{x} e^{x y} \cos 2 x-3 y+g(x) \\
& F(x, y)=e^{x y} \cos 2 x-3 y+g(x) \\
& \frac{\partial F}{\partial x}=\frac{e^{x y}(y) \cos 2 x+e^{x y}(-2) \sin (2 x)+g^{\prime}(x)=\frac{\frac{1}{y} e^{x y}}{} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x}{g^{\prime}(x)=2 x \text { or } g(x)=x^{2}+c} \\
& F(x, y)=e^{x y} \cos 2 x-\frac{3 y+x^{2}+c}{x y} \\
& \text { General solution: } e^{x y} \cos 2 x-3 y+x^{2}+c=0
\end{aligned}
$$

9. Find an integrating factor for the equation

$$
(\underbrace{\left(3 x y+y^{2}\right.}_{M})+(\underbrace{x^{2}+x y}_{N}) y^{\prime}=0
$$

and then solve the equation.


$$
\frac{M_{y}-N_{x}}{N}=\frac{(3 x+2 y)-(2 x+y)}{x^{2}+x y}=\frac{x+y}{x(x+y)}-\frac{1}{x} \text { depends on } x \text { only }
$$

Integrating factor $\mu(x): \quad \frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu$

$$
\begin{aligned}
& \frac{d u}{d x}=\frac{\mu}{x} \\
& \frac{d \mu}{\mu}=\frac{d x}{x} \Rightarrow \quad \ln |\mu|=\ln |x| \Rightarrow \mu(x)=x \\
& x\left(3 x y+y^{2}\right)+x\left(x^{2}+x y\right) y^{\prime}=0 \quad, \quad y^{\prime}=\frac{d y}{d x} \\
& \underbrace{\left(3 x^{2} y+x y^{2}\right.}_{M(x, y)}) d x+\underbrace{\left(x^{3}+x^{2} y\right)}_{N(x, y)} d y=0 \\
& \frac{\partial M}{\partial y}=3 x^{2}+2 x y \quad \frac{\partial N}{\partial x}=3 x^{2}+2 x y \\
& F(x y):\left\{\begin{aligned}
& \frac{\partial F}{\partial x}=3 x^{2} y+x y^{2} \\
& \int \frac{\partial x}{\partial y} y \delta\left(x^{3}+x^{2} y\right] d y \Rightarrow F(x, y)=x^{3} y+\frac{x^{2} y^{2}}{2}+g(x) \\
& \frac{\partial F}{\partial x}=3 x^{2} y+2 x y^{2}+g^{2}(x)=3 x^{2} y+x y^{2}
\end{aligned}\right\} \\
& g^{\prime}(x)=0 \\
& g(x)=c
\end{aligned}
$$

$$
F(x, y)=x^{3} y+\frac{x^{2} y^{2}}{2}+c
$$

General solution: $x^{3} y+\frac{x^{2} y^{2}}{2}+c=0$
10. Solve the equation/initial value problem
(a) $6 y^{\prime \prime}-5 y^{\prime}+y=0, y(0)=4, y^{\prime}(0)=0$
(b) $4 y^{\prime \prime}-12 y^{\prime}+9 y=0$
(c) $y^{\prime \prime}+4 y^{\prime}+5 y=0, y(0)=0, y^{\prime}(0)=1$
a) $6 y^{\prime \prime}-5 y^{\prime}+y=0, y(0)=4, y^{\prime}(0)=0$ anciliary equation: $\begin{aligned} y^{\prime \prime} & \rightarrow r^{2} \\ y^{\prime} & \rightarrow r \\ y^{\prime} & \rightarrow 1\end{aligned}$
$6 r^{2}-5 r+1=0$
$r_{1}=\frac{5+\sqrt{25-24}}{12}=\frac{1}{2}$
$r_{2}=\frac{5-1}{12}=\frac{4}{12}=\frac{1}{3}$
ceneral solution: $y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{\frac{t}{3}}$
pleng plug ${ }^{2}(t)=c$ ine intial

| $y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{\frac{t}{3}}$ | $y(0)=c_{1}+c_{2}=0$ |
| :--- | :--- |
| $y^{\prime}(t)=\frac{c_{1}}{2} e^{\frac{t}{2}}+\frac{c_{2}}{3} e^{\frac{t}{3}}$ | $y^{\prime}(0)=\frac{c_{1}}{2}+\frac{c_{2}}{3}=1$ |

$\left\{\begin{array}{l}c_{1}+c_{2}=0 \\ 3 c_{1}+2 c_{2}=6 \\ 3 c_{1}-2 c_{1}=6 \Rightarrow c_{t}=6, c_{2}=-6\end{array}\right.$


$$
y(t)=6 e^{\frac{t}{2}}-6 e^{\frac{t}{3}}
$$

11. Determine the longest interval in which the given initial value problem is certain to have a unique solution.

$$
(x-2) y^{\prime \prime}+y^{\prime}+(x-2)(\tan x) y=0, \quad y(3)=1, y^{\prime}(3)=2 .
$$

12. If the Wronskian of $f$ and $g$ is $3 e^{4 t}$ and $f(t)=e^{2 t}$, find $g(t)$.
13. A spring is stretch 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position $u$ at any time. Find the quasifrequency of the motion.

$$
\begin{aligned}
& m=2 \\
& u(0)=0.05 \\
& u^{\prime}(0)=0.1 \\
& m u u^{\prime \prime}+\gamma u^{\prime}+k u=0 \\
& 2 u^{\prime \prime}+\frac{3}{5} u^{\prime}+3 a u=0 \\
& \left.u(0)=0.05, \quad u^{\prime} / 0\right)=0.1 \\
& \text { solve the initial value problem. } \\
& r_{2}=\overline{r_{1}} \\
& \begin{array}{c}
\text { General solution: }\left(c_{1} \cos \frac{\sqrt{5991}}{20} t+c_{2} \sin \frac{\sqrt{5991}}{20} t\right) e^{-\frac{3}{20} t} \\
u(t)=(
\end{array} \\
& \text { Plug } u(t) \text { into the initial conditions: } u(0)=c_{1}=0.05 \\
& u^{\prime}(t)=\left(-c_{1} \frac{\sqrt{5991}}{20} \sin \frac{\sqrt{5991}}{20} t+c_{2} \frac{\sqrt{5991}}{20} \cos \frac{\sqrt{5991}}{20} t\right) e^{-\frac{3}{20} t} \\
& -\frac{3}{20}\left(C_{1} \cos \frac{\sqrt{5991}}{20} t+C_{2} \sin \frac{\sqrt{5991}}{20} t\right) e^{-\frac{3}{20} t} \\
& u^{\prime}(0)=c_{2} \frac{\sqrt{5991}}{20}-c_{1} \frac{3}{20}=0.1 \\
& c_{2} \sqrt{5991}-3 c_{1}=2 \Rightarrow c_{2}=\frac{2+3 c_{1}}{\sqrt{5991}}=\frac{2.15}{\sqrt{5991}} \\
& u(t)=\left(0.05 \cos \frac{\sqrt{5991}}{20} t+\frac{2.15}{\sqrt{5991}} \sin \frac{\sqrt{5991}}{20} t\right) e^{-\frac{3}{20} t}
\end{aligned}
$$

$$
m=\frac{8}{32}=\frac{1}{4}
$$

14. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system.

$$
\begin{aligned}
m u^{\prime \prime}+\gamma u^{\prime}+k u & =2 \cos 2 t \\
\frac{8}{32} u^{\prime \prime}+u^{\prime}+10 u & =2 \cos 2 t \\
u^{\prime \prime}+4 u^{\prime}+40 u & =8 \cos 2 t
\end{aligned}
$$

steady-state solution $=u_{p}(t)$ particular solution

$$
\begin{gathered}
u p(t)=A \cos 2 t+B \sin 2 t \\
u_{p}^{\prime}(t)=-2 A \sin 2 t+2 B \cos 2 t \\
u_{p}^{\prime \prime}(t)=-4 A \cos 2 t-4 B \sin 2 t \\
-4 A \cos 2 t-4 B \sin 2 t-8 A \sin 2 t+8 B \cos 2 t+40 A \cos 2 t+40 B \sin 2 t=8 \cos 2 t \\
\cos 2 t: \quad 36 A+8 B=8 \\
\sin 2 t: \quad 36 B-8 A=0 \Rightarrow A=\frac{36 B}{8}=\frac{9 B}{2} \\
36\left(\frac{9 B}{2}\right)+8 B=8 \\
\frac{18(9 B)+8 B}{2}=\frac{8}{2} \quad \Longrightarrow \quad 81 B+4 B=4 \quad B=\frac{4}{85}, A=\frac{18}{85}
\end{gathered}
$$

steady-rate solution: $u(t)=\frac{18}{85} \cos 2 t+\frac{4}{85} \sin 2 t$
resonance frequency: $\frac{\omega_{r}}{2 \pi}=\frac{\sqrt{\frac{k}{m}-\frac{y^{2}}{2 m^{2}}}}{2 \pi}=\ldots$
15. A mass weighing 4 lb stretches a spring 1.5 in . The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$,
(a) Formulate the initial value problem describing the motion of mass
(b) Solve the initial value problem.
(c) If the given external force is replaced by a force $4 \cos \omega t$ of frequency $\omega$, find the value of $\omega$ for which resonance occurs.

$$
\begin{array}{ll}
m=\frac{4}{32}=\frac{1}{8}, \quad 4 & =k \cdot \frac{1.5}{12} \Rightarrow k=\frac{48}{1.5}=32, y=0 \\
& \frac{1}{8} u^{\prime \prime}+32 u=2 \cos 3 t \\
u^{\prime \prime}+256 u=16 \cos 3 t, \quad u(0)=\frac{2}{12}=\frac{1}{6}, \quad u^{\prime}(0)=0
\end{array}
$$

transient part $\quad u_{h}(t)=c_{1} \cos 16 t+c_{2} \sin 16 t$
steady-state solution

$$
\operatorname{up}(t)=A \cos 3 t+B \sin 3 t
$$

$$
u(t)=C_{1} \cos 16 t+C_{2} \sin 16 t+\frac{16}{247} \cos 3 t
$$

$$
C_{1}=\frac{1}{6}-\frac{16}{247}
$$

$$
c_{2}=0
$$

$$
F=4 \cos \omega t, \quad \omega=16
$$

16. Find the general solution of the equation
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
variation of parameters.
$y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad r^{2}+6 r+9=0, \quad(r+3)^{2}=0, \quad r=-3$-repeated root

$$
\begin{gathered}
y_{h}(x)=\left(c_{1}+c_{2} x\right) e^{-3 x}=c_{1} \underbrace{e^{-3 x}}_{y_{1}(x)}+\underbrace{c_{2} x e^{-3 x}}_{y_{2}(x)} \\
y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=x e^{-3 x} \\
W\left[y_{1}, y_{2}\right]=\left|\begin{array}{ll}
e^{-3 x} & x e^{-3 x} \\
-3 e^{-3 x} & e^{-3 x}-3 x e^{-3 x}
\end{array}\right|=e^{-3 x}\left(e^{-3 x}-3 x e^{-3 x}\right)+3 x e^{-3 x} \cdot e^{-3 x}=e^{-6 x}
\end{gathered}
$$

$$
\begin{aligned}
& c_{1}(x)=-\int \frac{y_{2}(x) g(x)}{w\left[y_{1}, y_{2}\right]} d x=-\int \frac{x e^{-3 x}}{e^{-6 x}} \cdot \frac{e^{-3 x}}{1+2 x} d x=-\int \frac{x d x}{1+2 x}\left|\begin{array}{l}
u=1+2 x \\
x=\frac{u-1}{2} \\
d x=\frac{d u}{2}
\end{array}\right| \\
&=-\int \frac{\frac{u-1}{2} \cdot \frac{d u}{2}}{u}=-\frac{1}{4} \int(u-1) u^{-1} d u=-\frac{1}{4} \int\left(1-\frac{1}{4}\right) d u \\
&=-\frac{1}{4}(u-\ln |u|)+c_{3}=-\frac{1}{4}(1+2 x-\ln |1+2 x|)+c_{3} \\
& c_{2}(x)=\int \frac{y_{1}(x) g(x)}{w\left[y_{1}, y_{2}\right]} d x=\int \frac{e^{-3 x}}{e^{-6 x}} \cdot \frac{e^{-3 x}}{1+2 x} d x=\int \frac{d x}{1+2 x}=\ln |1+2 x|+c_{4}
\end{aligned}
$$

General solution:

$$
\begin{aligned}
& \text { General solution: } \\
& y(x)=-\frac{1}{4}(1+2 x-\ln |1+2 x|) e^{-3 x}+c_{3} e^{-3 x}+x e^{-3 x} \ln |1+2 x|+C_{4} x e^{-3 x}
\end{aligned}
$$

(b) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=1$
$y^{\prime \prime}+2 y^{\prime}+y=0 \Rightarrow r^{2}+2 r+1=0 \Rightarrow(r+1)^{2}=0 \Rightarrow r=-1 \quad$ repeated root
$y^{\prime}(t)=\left(c_{1}+c_{2} t\right) e^{-t}$

$$
\begin{gathered}
y_{h}(t)=\left(c_{1}+c_{2} t\right) e^{-t} \\
y_{p}(t)=A-t_{T_{r=-1}^{2}} e_{i}^{-t} \text { ith }
\end{gathered}
$$

$$
\begin{aligned}
& y_{p}^{\prime}= 2 A t e^{-t}-A t^{2} e^{-t} \\
& y_{p}^{\prime \prime}=2 A e^{-t}-2 A t e^{-t}-2 A t e^{-t}+A t^{2} e^{-t} \\
&= 2 A e^{-t}-4 A t e^{-t}+A t^{2} e^{-t} \\
& 2 A e^{-t}-4 A t e^{-t}+A t^{3} e^{-t}+4 A t e^{-t}-2 A t^{2} e^{-t}+A t^{2} e^{-t}=4 e^{-t} \\
& 2 A e^{-t}=4 e^{-t} \Rightarrow A=2 \\
& y_{P}=2 t^{2} e^{-t} \\
& y(t)=\left(e_{1}+c_{2} t\right) e^{-t}+2 t^{2} e^{-t}
\end{aligned}
$$

(c) $y^{\prime \prime}+4 y=32 \sin 2 t-32 t \cos 2 t$
17. For the equation $y^{\prime \prime}+x y^{\prime}+2 y=0$
(a) Seek its power series solution about $x_{0}=0$; find the recurrence relation.

$$
\begin{aligned}
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1} \\
& y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2} \\
& \sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{n=1}^{\infty} a_{n} n x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}+\sum_{n=1}^{\infty} a_{n} n x x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \begin{array}{l}
n-2 \rightarrow n \\
\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
\end{array} \\
& a_{0+2}(0+2)(0+1) x^{0}+\sum_{n=1}^{\infty} a_{n+2}(n+2)(n+1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+2 a_{0} x^{0}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& 2 a_{2}+2 a_{0}+\sum_{n=1}^{\infty}\left[a_{n+2}(n+2)(n+1)+a_{n} n+2 a_{n}\right] x^{n}=0 \\
& \text { Recurrence relation: } \\
& \begin{array}{l}
2 a_{2}+2 a_{0}=0 \Rightarrow a_{2}=-a_{0} \\
a_{n+2}(n+2)(n+1)+a_{n} n+2 a_{n}=0
\end{array} \\
& a_{n+2}(n+2)(n+1)=-(n+2) a_{n} \\
& a_{n+2}=-\frac{a_{n}}{n+1} \text { recurrence relation }
\end{aligned}
$$

18. Determine a lower bound for the radius of convergence of series solution for the equation
about
(a) $x_{0}=-2, \rho=1$
(b) $x_{0}=-\frac{1}{3} \quad, \rho=1 / 3$
(c) $x_{0}=2 \quad, \rho=2$

$$
\begin{aligned}
& \begin{array}{l}
\left(x^{2}+x\right) y^{\prime \prime}+3 y^{\prime}-6 x y=0 \\
\text { jingular points }
\end{array} \begin{array}{r}
x^{2}+x=0 \\
x(x+1)=0 \\
x_{1}=0, \quad x_{2}=-1
\end{array}
\end{aligned}
$$

19. Determine $y^{\prime \prime \prime}(1)$ if $y(x)$ is the solution of the initial value problem

$$
x^{2} y^{\prime \prime}+(1+x) y^{\prime}+3(\ln x) y=0, \quad y(1)=2, y^{\prime}(1)=0
$$

(a) $f(t)= \begin{cases}\frac{t}{2}, & 0 \leq t<6 \\ 3, & t \geq 6\end{cases}$

1. Find the Laplace transform of the given function.

$$
\begin{aligned}
& \text { (a) } f(t)=\left\{\frac{t}{2}, 0 \leq t<6, f(t)=\frac{t}{2}+\left(3-\frac{t}{2}\right) u_{b}(t)\right. \\
& \mathscr{L}\{f(t)\}=\mathscr{L}\left\{\frac{t}{2}+\left(3-\frac{t}{2}\right) u_{b}(t)\right\} \\
&= \mathscr{L}\left\{\frac{t}{2}\right\}+\mathscr{L}\left\{\frac{1}{2}(b-t) u_{b}(t)\right\} \\
&= \frac{1}{2 s^{2}}+\frac{1}{2}(-1) \mathscr{L}\left\{(t-b) u_{b}(t)\right\} \\
&= \frac{1}{2 s^{2}}-\frac{1}{2} e^{-b s} \mathscr{L}\{t\}=\frac{1}{2 s^{2}}-\frac{e^{-b s}}{2 s^{2}}
\end{aligned}
$$

(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$

$$
\begin{aligned}
& f(t)=\left[(t-1)^{2}+1\right] u_{1}(t) \\
& =(t-1)^{2} u_{1}(t)+u_{1}(t) \\
& y\left\{(t-1)^{2} u_{1}(t)+u_{1}(t)\right\} \\
& =e^{-5} x\left\{t^{2}\right\}+e^{-s} \\
& =e^{-5} \frac{2}{s^{3}}+\frac{e^{-s}}{s}{ }^{5}
\end{aligned}
$$

(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)=\left[(t-1)^{2}+1\right] u_{1}(t)=(t-1)^{2} u_{1}(t)+u_{1}(t)$

$$
\begin{aligned}
\begin{array}{l}
v=v \\
2 t+2) u_{1}(t)
\end{array} & =\left[(t-1)^{2}+1\right] u_{1}(t)=(t-1)^{2} u_{1}(t)+u_{1}(t) \\
\mathscr{L}\{f(t)\} & =\dot{L}\left\{(t-1)^{2} u_{1}(t)\right\}+\mathscr{L}\left\{u_{1}(t)\right\}
\end{aligned}=\mathscr{z}\left\{t^{2}\right\} e^{-c s}+\frac{e^{-c s}}{s} .
$$

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
& f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau d \tau=(g \nVdash h)(t) \\
& g(t-\tau)=(t \cdot \tau)^{2} \Rightarrow g(t)=t^{2} \\
& h(\tau)=\cos 2 \tau \Rightarrow h(t)=\cos 2 t \\
& \mathscr{L}\{f(t)\}=\mathcal{L}\{g(t)\} \cdot \mathscr{L}\{h(t)\} \\
&=\mathscr{L}\left\{t^{2}\right\} \cdot \mathscr{L}\{\cos 2 t\} \\
&=\frac{2}{s^{3}} \cdot \frac{s}{s^{2}+4}
\end{aligned}
\end{aligned}
$$

(d) $f(t)=t \cos 3 t$

$$
\begin{aligned}
& f(t)=t \cos 3 t \\
& \mathscr{L} f t \cos 3 t\}=(-1) \frac{d}{d s}\{\mathscr{L}\{\cos 3 t\}\} \\
& =-\frac{d}{d s}\left(\frac{s}{s^{2}+9}\right) \\
& =-\frac{s^{2}+9-2 s(s)}{\left(s^{2}+9\right)^{2}} \\
& =\frac{s^{2}-9}{\left(s^{2}+9\right)^{2}} \\
& \begin{array}{l}
f(t)=e^{2 \delta(t-1)} \\
\\
\mathscr{L}\{\delta(t-1)\}=e^{-s} \\
\mathscr{L}\left\{e^{t} \delta(t-1)\right\}=e^{-(s-1)}
\end{array}
\end{aligned}
$$

(e) $f$
21. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
2. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$

$$
\begin{aligned}
& \frac{2 s+6}{s^{2}-4 s+8}=\frac{2 s+6}{(s-2)^{2}+4}=2 \frac{s+3}{(s-2)^{2}+4} \\
& =2 \frac{s-2+5}{(s-2)^{2}+4}=2 \frac{s-2}{(s-2)^{2}+4}+5 \cdot \frac{2}{(s-2)^{2}+4} \\
& \mathscr{L}^{-1}\{F(s)\}=2 \mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^{2}+4}\right\}+5 \mathcal{L}^{-1}\left\{\frac{2}{(s-2)^{2}+4}\right\} \\
& =2 e^{2 t} \cos 2 t+5 e^{2 t} \sin 2 t
\end{aligned}
$$

(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$

$$
\begin{gathered}
\frac{1}{s^{2}+s-2}=\frac{1}{(s+2)(s-1)}=\frac{A}{s+2}+\frac{B}{s-1} \\
=\frac{A(s-1)+B(s+2)}{(s+2)(s-1)}
\end{gathered}
$$

$$
1=A(S-1)+B(S+2)
$$

$S=1: \quad I=3 B \Rightarrow B=1 / 3$
$s=-2: \quad 1=-3 A \Rightarrow A=-1 / 3$
$\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+s-2}\right\}=\mathscr{L}\left\{-\frac{1}{3} \frac{1}{s+2}+\frac{1}{3} \frac{1}{s-1}\right\}$
$=-\frac{1}{3} e^{-2 t}+\frac{1}{3} e^{t}$
$\mathscr{L}\left\{\frac{e^{-2 s^{3}}}{s^{2}+5-2}\right\}=\left[-\frac{1}{3} e^{-2(t-2)}+\frac{1}{3} e^{(t-2)}\right] u_{2}(t)$

$$
\begin{aligned}
\mathscr{L}\{g(t)\}=\mathscr{L}\left\{t-(t-1) u_{1}(t)\right\} & =\mathscr{L}\{t\}-\mathscr{L}\left\{(t-1) u_{1}(t)\right\} \\
& =\frac{1}{s^{2}}-e^{-s} \mathscr{L}\{t\}=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}
\end{aligned}
$$

$$
\left.x\{y\}=Y(s), \quad x\left\{y^{\prime \prime}\right\}=s^{2} y(s)-s y(0)^{2}-y^{\prime}(0)^{0}=s^{2} Y / s\right)
$$

$$
s^{2} y(s)+4 y(s)=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}
$$

$$
\left(s^{2}+4\right) y(s)=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}
$$

$$
y(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}-\frac{e^{-s}}{s^{2}\left(s^{2}+4\right)}
$$

$$
\begin{aligned}
& Y(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}-\frac{e^{-s}}{s^{2}\left(s^{2}+4\right)} \\
& y(t)=\mathscr{L}^{-1}\{Y(s)\}=\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s^{2}\left(s^{2}+4\right)}-\frac{B}{s^{2}\left(s^{2}+4\right)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& (t)=\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{S^{2}\left(s^{2}+4\right)\right. \\
& \text { Partial fractions: } \quad \frac{1}{S^{2}\left(s^{2}+4\right)}=\frac{A}{S}+\frac{B}{s^{2}}+\frac{C s+D}{S^{2}+4}, \begin{array}{l}
A=C=0 \\
B-1 / 4 \\
D=-1 / 4
\end{array}
\end{aligned}
$$

$$
\left.\mathcal{L}^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+4\right)}\right\}===-\frac{1}{4} \frac{1}{s^{2}}-\frac{1}{4 \cdot 2} \frac{2}{s^{2}+4}\right\}
$$

$$
\begin{gathered}
=\frac{1}{4} t-\frac{1}{8} \sin 2 t \\
\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s^{2}\left(s^{2}+4\right)}\right\}=u_{1}(t)\left[\frac{1}{4}(t-1)-\frac{1}{8} \sin 2(t-1)\right] \\
y(t)=\frac{1}{4} t-\frac{1}{8} \sin 2 t+u_{1}(t)\left[\frac{1}{4}(t-1)-\frac{1}{8} \sin 2(t-1)\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { 22. Solve the initial value problem using the Laplace transform: } \\
& \text { (a) } \left.\left.4 \text { f } y^{\prime \prime}+43\right)\right\}\left\{\begin{array}{ll}
t, & 0 \leq t<1 \\
1, & t \geq 1
\end{array}\right\}, y(0)=y^{\prime}(0)=0 \\
& \left\{\begin{aligned}
t, 0 \leq t<1 & =t+(1-t) u_{1}(t) \\
1, t \geqslant 1 & =t-(t-1) u_{1}(t)
\end{aligned}\right.
\end{aligned}
$$

(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
$x\left\{y^{\prime \prime}+2 y^{\prime}+3 y\right\}=L\{\delta(t-3 \pi)\}$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=g(t), y(0)=2, y^{\prime}(0)=-3$

```
(c) }\mp@subsup{y}{}{\prime\prime}+4\mp@subsup{y}{}{\prime}+4y=g(t),y(0)=2,y(0)=-
    L{\mp@subsup{y}{}{\prime}+4\mp@subsup{y}{}{\prime}+4y}=\mathscr{L}{g(t)}
    & {g(t)}=G(s)
        y{y}=y/s)
            x(\mp@subsup{y}{}{\prime}}=sY(s)-y(0)=sY(s)-2
            L{(y'}}=\mp@subsup{s}{}{2}Y/(s)-sy(0)-\mp@subsup{y}{}{\prime}(0
            = 5}\mp@subsup{5}{}{2}(s)-2s+
            s}\mp@subsup{s}{}{2}Y(s)-2s+3+4sY(s)-8+4Y(s)=G(s
                Y(s)(\mp@subsup{s}{}{2}+4s+4)=6(s)+2s+5
                y(s)=\frac{G(s)}{\mp@subsup{s}{}{2}+4s+4}+\frac{2s+5}{\mp@subsup{s}{}{2}+4s+4}
            y(t)=\mp@subsup{y}{}{-1}{y(s)}=\mp@subsup{y}{}{-1}{[\frac{G/s)}{\mp@subsup{s}{}{2}+4s+4}+\frac{2s+5}{\mp@subsup{s}{}{2}+4s+4}}
                \boldsymbol { x } ^ { - 1 } \{ \frac { 1 } { s ^ { 2 } + 4 s + 4 } \} = \boldsymbol { y } ^ { - 1 } \{ \frac { 1 } { ( s + 2 ) ^ { 2 } } \}
                = e-2t}
                \frac{2s+5}{\mp@subsup{s}{}{2}+4s+4}=\frac{A}{s+2}+\frac{B}{(s+2\mp@subsup{)}{}{2}},\frac{A}{(s+2)}+\frac{B}{(})
                                    = }\frac{A(s+2)+B}{(s+2\mp@subsup{)}{}{2}
                            2s+5=A(s+2)+B
                    S=-2: 1= B
                    S=0: }\quad5=2A+B,2A=5-B=
                        A=2
                2s+5
                    {
```

```
    10. Find \(A^{-1}\) if \(A=\left(\begin{array}{ll}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right)\)
et \(A=(1+i)(2-i)-(-1+2 i)(3+2 i)=2-i+2 i-i^{2}+3+2 i-6 i-4 i^{-1}\)
        \(=5+5-3 i=10-3 i\)
        \(\frac{1}{\operatorname{dot} t}=\frac{1}{10-3 i}=\frac{10+3 i}{(10-3 i)(10+3 i)}=\frac{10+3 i}{100-9 i^{2}}=\frac{10+3 i}{109}\)
    \(A^{-1}=\frac{1 D+3 i}{109}\left(\begin{array}{cc}2-i & 1-2 i \\ -3-2 i & 1+i\end{array}\right)\)
```

    5. Find \(B A\) if \(A=\left(\begin{array}{ll}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right), B=\left(\begin{array}{ll}i & 3 \\ 2 & -2 i\end{array}\right)\)
        \(\begin{aligned} B A= & =\left(\begin{array}{cc}i & 3 \\ 2 & -2 i\end{array}\right)\left(\begin{array}{cc}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right)=\left(\begin{array}{ll}i(1+i)+3(3+2 i) & i(-1+2()+3(2-i) \\ 2(1+i)-2 i(3+2 i) & 2(-1+2 i)-2 i(2-i)\end{array}\right. \\ & =\left(\begin{array}{cc}i+i^{2}+9+6 i & -i+2 i^{2}+6-3 i \\ 2+2 i-6 i-4 i^{2} & -2+4 i-4 i+4 i^{2}\end{array}\right)=\left(\begin{array}{cc}8+7 i & 4-4 i \\ 6-4 i & -6\end{array}\right)\end{aligned}\)
    25. Find the general solution of the system. Classify the critical point $(0,0)$ as to type, determine whether it is stable or unstable, sketch the phase portrait.
(a) $x^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) x, \quad A=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right), \quad \begin{aligned} & \operatorname{tr}(t)=1-2=-1 \\ & \operatorname{det}(t)=-2-4=-6\end{aligned}$
characteristic equation
$\lambda^{2}+\lambda-6=0$
$(\lambda+3)(\lambda-2)=0$
$\begin{array}{cc}\lambda_{1}=-3, & \vec{v}=\binom{1}{-4} \\ \lambda_{2}=2, & \vec{v}=\binom{1}{1}\end{array}$ see $26(a)$
General solution

$$
\vec{x}(t)=c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}
$$

$$
\psi\left(\begin{array}{cc}
1 e^{-3 t} & 1 e^{2 t} \\
-4 e^{-3 t} & 1 e^{2 t}
\end{array}\right)
$$

Phase portrait

$(0,0)$ is a saddle point
unstable.
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}-3 & -1 \\ \operatorname{ccW} & -1\end{array}\right) \mathbf{x}, \quad A=\left(\begin{array}{cc}-3 & -1 \\ 1 & -1\end{array}\right), \quad \begin{aligned} & \operatorname{tr}(A)=-3-1=-4 \\ & \operatorname{det} A=3+1=4\end{aligned}$
characteristic equation

$$
\begin{aligned}
& \lambda^{2}+4 \lambda+4=0 \\
& (\lambda+2)^{2}=0 \Rightarrow \lambda=-2, \text { repeated }
\end{aligned}
$$

eigenvector $\quad \vec{v}=\binom{1}{-1}$
generalized eigenvector
General solution

$$
\vec{w}=\binom{-1}{0}
$$

$$
\vec{x}(t)=\left[c_{1}\binom{1}{-1}+c_{2}\left(t\binom{1}{-1}+\binom{-1}{0}\right)\right] e^{-2 t}
$$

$$
\lim _{t \rightarrow \infty} \vec{x}(t)=\overrightarrow{0}
$$


$(0,0)$ is an improper node asympotically stable
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}-3 & 2 \\ \overline{C W} & -1\end{array}\right) \mathbf{x} \quad, \quad \mathrm{A}=\left(\begin{array}{rr}-3 & 2 \\ -1 & -1\end{array}\right)$,

$$
\begin{aligned}
& \operatorname{tr}(A)=-3-1=-4 \\
& \operatorname{det}(A)=3+2=5
\end{aligned}
$$

Characteristic equation
eigenvalues

$$
\lambda^{2}+4 \lambda+5=0
$$

$$
\lambda=-2 \pm i
$$

eigenvector $\quad \lambda=-2+i, \quad \vec{v}=\binom{v_{1}}{v_{2}}, \quad(A-(-2+i) I) \vec{v}=\overrightarrow{0}$

General solution:

$$
\lim _{t \rightarrow \infty} \vec{x}(t)=0
$$

Phase portrait

$(0,0)$ is a spiral sink asymptotically stable

$$
\begin{aligned}
& \left(\begin{array}{cc}
-3-(-2+i) & 2 \\
-1 & -1-(-2+i)
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \\
& \left(\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Rightarrow\left\{\begin{array}{l}
(-1-i) v_{1}+2 v_{2}=0 \\
-v_{1}+(1-i) v_{2}=0
\end{array}\right. \\
& v_{1}=(1-i) v_{2} \\
& \vec{v}=\binom{v_{1}}{v_{2}}=\binom{(1-i) v_{2}}{v_{2}} \stackrel{v_{2}=1}{=}\binom{1-i}{1}, \lambda=-2+i \\
& \vec{v} e^{\lambda t}=\binom{1-i}{1} \cdot e^{(-2+i) t}=\binom{1-i}{1} e^{-2 t}(\cos t+i \sin t) \\
& =e^{-2 t}\binom{(1-i)(\cos t+i \sin t)}{\cos t+i \sin t}=e^{-2 t}\binom{\cos t+i \sin t-i \cos t-i^{2} \sin t}{\cos t+i \sin t} \\
& =e^{-2 t}\left(\left(\begin{array}{c}
(\cos t+\sin t) \\
\cos t)+(i(\sin t-\cos t) \\
\dot{\sin } t
\end{array}\right)\right) \\
& =e^{-2 t}\left[\binom{\cos t+\sin t}{\cos t}+i\binom{\sin t-\cos t}{\sin t}\right]
\end{aligned}
$$

$$
\left(-1-1, \quad \lambda^{2}-(\operatorname{tr} \lambda) \lambda+\operatorname{det} \notin=0\right.
$$

26. Find the general solution of the system using variation of parameters and Laplace Transform, if possible.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{x}+\binom{e^{-2 t}}{-2 e^{t}}$

Undetermined coefficients.
Corresponding homogeneous system: $\quad \vec{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right) \vec{x}, \quad A=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right), \operatorname{tr}(A)=1-2=-1$
$\operatorname{det}(A)=-2-4=-6$ Characteristic equation $\begin{aligned} & \lambda^{2}+\lambda-6=0 \\ & (\lambda+3)(\lambda-2)=0\end{aligned}$ or $\quad \begin{aligned} & \lambda_{1}=-3 \\ & \lambda_{2}=2\end{aligned}$ eigenvalues.


$$
\begin{aligned}
& \left(\begin{array}{cc}
1+3 & 1 \\
4 & -2+3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or } \begin{array}{l}
4 v_{1}+v_{2}=0 \\
v_{2}=-4 v_{1}
\end{array} \\
& \vec{v}=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{-4 v_{1}} \stackrel{v_{1}=1}{=}\binom{1}{-4}, \lambda=-3
\end{aligned}
$$

$$
(A-2 I) \vec{w}=\overrightarrow{0}
$$

$\lambda_{2}=2$. $\vec{w}=\binom{w_{1}}{w_{2}}$, is a solution of $\left(A-w_{1}+w_{2}=0\right.$

$$
\begin{aligned}
& \vec{r}=\binom{w_{1}}{w_{2}}, \text { is a solution of } \\
&\left(\begin{array}{cc}
1-2 & 1 \\
4 & -2-2
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or }\left(\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{0}{0} \text { or } \begin{array}{c}
-w_{1}+w_{2}=0 \\
w_{1}=w_{2}
\end{array} \\
& \rightarrow\left(w_{1}\right) \quad\left(w_{1}\right)
\end{aligned}
$$

$$
\vec{w}=\binom{w_{1}}{w_{2}}=\binom{w_{1}}{w_{1}} \stackrel{w_{1}=1}{=}\binom{1}{1}, \lambda=2
$$

$$
\vec{x}_{h}(t)=c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}
$$

$$
\begin{aligned}
& \text { general solution of the } \\
& \text { homogeneous system }
\end{aligned}
$$

$$
\vec{x}_{p}(t)=\vec{a} e^{-2 t}+\vec{b} e^{t}, \quad \vec{a}=\binom{a_{1}}{a_{2}}, \quad \vec{b}=\binom{b_{1}}{b_{2}}
$$

$$
\vec{x}_{p}^{\prime}(t)=-2 \vec{a} e^{-2 t}+\vec{b} e^{t}
$$

$$
\begin{aligned}
& \left.\vec{x}_{p}(t)=\vec{a} e^{-2 t}+\vec{b} e^{t}, \quad \vec{a}=\binom{a_{1}}{a_{2}}, \vec{b}=\binom{b_{1}}{b_{2}} \left\lvert\, \begin{array}{l}
\vec{x}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \vec{x}+\binom{e^{-2 t}}{-2 e^{t}} \\
\vec{x}_{p}^{\prime}(t)=-2 \vec{a} e^{-2 t}+\vec{b} e^{t} \\
-2 \vec{a} e^{-2 t}+\vec{b} e^{t}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\left(\vec{a} e^{-2 t}+\vec{b} e^{t}\right)+\binom{e^{-2 t}}{-2 e^{t}} \\
-2\binom{a_{1}}{a_{2}} e^{-2 t}+\binom{b_{1}}{b_{2}} e^{t}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\left[\binom{a_{1}}{a_{2}} e^{-2 t}+\binom{b_{1}}{b_{2}} e^{t}\right]+\binom{e^{-2 t}}{-2 e^{t}} \\
\binom{-2 a_{1} e^{-2 t}+b_{1} e^{t}}{-2 a_{2} e^{-2 t}+b_{2} e^{t}}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\binom{a_{1} e^{-2 t}+b_{1} e^{t}}{a_{2} e^{-2 t}+b_{2} e^{t}}+\binom{e^{-2 t}}{-2 e^{t}} \\
\binom{-2 a_{1} e^{-2 t}+b_{1} e^{t}}{-2 a_{2} e^{-2 t}+b_{2} e^{t}}=\binom{a_{1} e^{-2 t}+b_{1} e^{t}+a_{2} e^{-2 t}+b_{2} e^{t}+e^{-2 t}}{4\left(a_{1} e^{-2 t}+b_{1} e^{t}\right)-2\left(a_{2} e^{-2 t}+b_{2} e^{t}\right)-2 e^{t}} \\
\binom{-2 a_{1} e^{-2 t}+b_{1} e^{t}}{-2 a_{2} e^{-2 t}+b_{2} e^{t}}=\binom{e^{-2 t}\left(a_{1}+a_{2}+1\right)+e^{t}\left(b_{1}+b_{2}\right)}{e^{-2 t}\left(4 a_{1}-2 a_{2}\right)+e^{t}\left(4 b_{1}-2 b_{2}-2\right)} \\
2 n d \text { component }
\end{array}\right.\right]
\end{aligned}
$$

list component

$$
\begin{aligned}
\vec{x}_{p}(t) & =\binom{a_{1}}{a_{2}} e^{-2 t}+\binom{b_{1}}{b_{2}} e^{t} \\
& =\binom{0}{-1} e^{-2 t}+\binom{1 / 2}{0} e^{t}
\end{aligned}
$$

$\vec{x}_{p}(t)=\binom{1 / 2 e^{t}}{-e^{-2 t}} \quad \begin{array}{r}\text { particular solution of the } \\ \text { nonhomogeneous }\end{array}$ nonhomogeneous system.

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)=c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}+\binom{1 / 2 e^{t}}{-e^{-2 t}}
$$

$$
\begin{aligned}
& \begin{array}{l}
e^{-2 t}:\left\{\begin{array}{l}
-2 a_{1}=a_{1}+a_{2}+1 \Rightarrow a_{2}+\frac{1+0}{a_{2}=-1} \\
e^{t}: \\
b_{1}=b_{1}+b_{2} \Rightarrow b_{2}=0
\end{array}\right.
\end{array} \\
& e^{-2 t}:\left\{\begin{array}{l}
\text { end component } \\
e^{t}: 2 a_{2}=4 a_{1}-2 a_{2} \Rightarrow 4 a_{1}=0 \Rightarrow a_{1}=0 . \\
b_{2}=4 b_{1}-2 b_{2}-2 \Rightarrow 4 b_{1}-2=0 \text { or } b_{1}=1 / 2
\end{array}\right.
\end{aligned}
$$

Laplace Tranoform $\vec{x}(0)=\overrightarrow{0}$
$\mathscr{L}\{\vec{x}(t)\}=\vec{X}(s), \quad \mathcal{L}\left\{\vec{x}^{\prime}(t)\right\}=s \vec{X}(s)-\vec{x}(0) P=s \vec{x}(s)$
$\mathscr{L}\{\vec{x}(t)\}=\vec{X}(s), \quad \mathscr{L}\left\{x(t)=\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}\right.$
$\mathscr{L}\left\{\binom{e^{-2 t}}{-2 e^{t}}\right\}=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right) \vec{x}(s)+\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}$
$\Phi \bar{x}(s)-\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right) \vec{x}(s)=\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}$
$\left[s I-\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right)\right] \vec{x}(s)=\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}$
$\left[\left(\begin{array}{cc}s & 0 \\ 0 & s\end{array}\right)-\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right)\right] \vec{x}(s)=\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}$
$\left(\begin{array}{cc}s-1 & -1 \\ -4 & s+2\end{array}\right) \vec{x}(s)=\binom{\frac{1}{s+2}}{-\frac{2}{s-1}} \Longrightarrow \vec{x}(s)=\left(\begin{array}{cc}s-1 & -1 \\ -4 & s+2\end{array}\right)^{-1}\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}$
$\left|\begin{array}{cc}s-1 & -1 \\ -4 & s+2\end{array}\right|=(s-1)(s+2)-4=s^{2}+s-2-4=s^{2}+s-6$
$\left(\begin{array}{cc}s-1 & -1 \\ -4 & s+2\end{array}\right)^{-1}=\frac{1}{s^{2}+s-6}\left(\begin{array}{cc}s+2 & 1 \\ 4 & s-1\end{array}\right)=\left(\begin{array}{cc}\frac{s+2}{s^{2}+s-6} & \frac{1}{s^{2}+s-6} \\ \frac{4}{s^{2}+s-6} & \frac{s-1}{s^{2}+s-6}\end{array}\right)$
$\vec{x}(s)=\left(\begin{array}{cc}\frac{s+2}{s^{2}+s-6} & \frac{1}{s^{2}+s-6} \\ \frac{4}{s^{2}+s-6} & \frac{s-1}{s^{2}+s-6}\end{array}\right)\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}=\left(\begin{array}{ll}\frac{1}{s^{2}+s-6} & -\frac{2}{(s-1)\left(s^{2}+s-6\right)} \\ \frac{4}{(s+2)\left(s^{2}+s-6\right)} & -\frac{2}{s^{2}+5-6}\end{array}\right)$
$\vec{x}(t)=\mathcal{L}^{-1}\{\vec{x}(s)\}$

$$
\begin{gathered}
\vec{x}(s)=\left(\begin{array}{cc}
\frac{s+2}{s^{2}+s-6} & \frac{1}{s^{2}+s-6} \\
\frac{4}{s^{2}+s-6} & \frac{s-1}{s^{2}+s-6}
\end{array}\right)\binom{\frac{1}{s+2}}{-\frac{2}{s-1}}=\left(\begin{array}{ll}
\frac{1}{s^{2}+s-6} & -\frac{2}{(s-1)\left(s^{2}+s-6\right)} \\
\frac{4}{(s+2)\left(s^{2}+s-6\right)}-\frac{2}{s^{2}+5-6}
\end{array}\right) \\
\vec{x}(t)=\mathcal{L}^{-1}\{\vec{x}(s)\}
\end{gathered}
$$

Partial fractions.

$$
\begin{aligned}
\frac{1}{+3)(s-2)} & =\frac{A}{s+3}+\frac{B}{s-2}=\frac{1}{5}\left(\frac{1}{s-2}-\frac{1}{s+3}\right) \\
1 & =A(s-2)+B(s+3) \\
s=2: \quad 1 & =5 B \Rightarrow \mathcal{L}^{-1}\left\{\frac{1}{5}\left(\frac{1}{s-2}-\frac{1}{s+3}\right)\right\}=\frac{1}{5}\left(e^{2 t}-e^{-3 t}\right) \\
s=-3: & 1=-5 A \Rightarrow A=-1 / 5
\end{aligned}
$$

$-\frac{2}{(s-1)\left(s^{2}+s-6\right)}=-\frac{2}{(s-1)(s+3)(s-2)}=\frac{A}{s-1}+\frac{B}{s+3}+\frac{C}{s-2}=\frac{1}{2} \frac{1}{s-1}-\frac{1}{10} \frac{1}{s+3}-\frac{2}{5} \frac{1}{s-2}$
$\begin{array}{ll}s=-3: & -2=A(s+3)(s-2)+B(s-1) \\ -2=20 B \Rightarrow B=-\frac{1}{10}\end{array}$
s=2: $\quad-2=5 C \Rightarrow \quad c=-\frac{2}{5}$
$\frac{s=1:}{4} \quad-2=-4 A \Rightarrow A=1 / 2 \quad \frac{4}{(s+2)(s+3)(s-2)}=\frac{A}{s+2}+\frac{B}{s+3}+\frac{C}{s-2}=-\frac{1}{s+2}+\frac{4}{5} \frac{1}{s+3}+\frac{1}{5} \frac{1}{s-2}$
$\begin{array}{ll} & \\ s=2: & 4=A(s+3)(s-2)+B(s+2)(s-2)+C(s+2)(s+3) \\ s=-3: & 4=5 B \Rightarrow C=\frac{4}{-1}\left\{\frac{4}{(s+2)(s+3)(s-2)}\right\}=-e^{-2 t}+\frac{4}{5} e^{-3 t}+\frac{1}{5} e^{2 t} \\ & \end{array}$
$s=-2: \quad 4=-4 A \Rightarrow A=-1$
$\vec{x}(t)=\mathcal{L}^{-1}\{\vec{x}(s)\}=\binom{\frac{1}{5}\left(e^{2 t}-e^{-3 t}\right)+\frac{1}{2} e^{t}-\frac{1}{10} e^{-3 t}-\frac{2}{5} e^{2 t}}{-e^{-2 t}+\frac{4}{5} e^{-3 t}+\frac{1}{5} e^{2 t}-\frac{2}{5}\left(e^{2 t}-e^{-3 t}\right)}$
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}4 & -2 \\ 8 & -4\end{array}\right) \mathbf{x}+\binom{t^{-3}}{-t^{-2}}$ Honogeneout system: $\quad \vec{x}^{\prime}=\left(\begin{array}{cc}4 & -2 \\ 8 & -4\end{array}\right) \vec{x}, \quad A=\left(\begin{array}{ll}4 & -2 \\ 8 & -4\end{array}\right), \begin{aligned} & \operatorname{tr}(A)=0 \\ & \operatorname{det}(A)=0\end{aligned}$

corresponding eigenvector $\vec{v}=\binom{v_{1}}{v_{2}}$ is a solution of $\begin{aligned} & (A-O \cdot I) \vec{v}=\overrightarrow{0} \\ & A \vec{v}=\overrightarrow{0}\end{aligned}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
4 & -2 \\
8 & -4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \text { or } \quad \begin{array}{c}
4 v_{1}-2 v_{2}=0 \\
\text { or } 2 v_{1}-v_{2}=0
\end{array} \text { or } v_{2}=2 v_{1} \\
& \vec{v}=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{2 v_{1}} \stackrel{v_{1}=1}{\left(\binom{1}{2}, \lambda=0\right.} \xrightarrow{\vec{w}=\binom{w_{1}}{w_{2}}, \text { is a solution } \quad(A-0 \cdot I) \vec{w}=\vec{v}} \\
& \text { Generalized eigenvector }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\text { Generalized eigenvector }}{} \begin{array}{l}
\left(\begin{array}{cc}
4 & -2 \\
8 & -4
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{2} \Longrightarrow 4 w_{1}-2 w_{2}=1 \text { or } w_{2}=\frac{4 w_{1}-1}{2} \\
\vec{w}=\binom{w_{1}}{w_{2}}=\binom{w_{1}}{\frac{4 w_{1}-1}{2}} \stackrel{w_{1}=0}{=}\binom{0}{-1 / 2} \\
\vec{x}_{h}(t)=C_{1}\binom{1}{2} e^{0 . t}+c_{2}\left[t\binom{1}{2}+\binom{0}{-1 / 2}\right] e^{0 . t} \\
\overrightarrow{w_{h}}(t)=c_{1}\binom{1}{2}+c_{2}\binom{t}{2 t-1 / 2}-\quad \text { general solution of the homogeneous system }
\end{array}
\end{gathered}
$$

 $\operatorname{det} \psi(t)=\left|\begin{array}{cc}1 & t \\ 2 & 2 t-1 / 2\end{array}\right|=2 t-1 / 2-2 t=-1 / 2$

$$
\begin{aligned}
& (t)=\frac{1}{\operatorname{det} \psi(t)}\left(\begin{array}{cc}
2 t-1 / 2 & -t \\
-2 & 1
\end{array}\right)=-2\left(\begin{array}{ll}
-2 & 1 \\
-2 t \\
t^{2} \\
t^{2}
\end{array}\right)=\binom{(-4 t+1) \frac{1}{t^{3}}-2 t \frac{1}{t^{2}}}{\frac{4}{t^{3}}+\frac{2}{t^{2}}}=\binom{-\frac{4}{t^{2}}+\frac{1}{t^{2}}-\frac{2}{t}}{\frac{4}{t^{2}}+\frac{2}{t^{2}}} \\
& \psi^{-1}(t) \vec{g}(t)=\left(\begin{array}{cc}
-4 t+1 & 2 t \\
4 & -2
\end{array}\right)
\end{aligned}
$$

$\int \Psi^{-1}(t) g(t) d t=\binom{\int\left(-\frac{4}{t^{2}}+\frac{1}{t^{3}}-\frac{2}{t}\right) d t}{\int\left(\frac{4}{t^{3}}+\frac{2}{t^{2}}\right) d t}=\binom{\frac{4}{t}-\frac{1}{2 t^{2}}-2 \ln |t|+c_{1}^{9}}{-\frac{4}{2 t^{2}}-\frac{2}{t}+c_{2}^{\prime}}$ $\vec{x}_{p}(t)=\psi(t) \int \psi^{-1}(t) g(t) d t=\left(\begin{array}{cc}1 & 2 \\ 2 & 2 t^{-1 / 2}\end{array}\right)\left(\begin{array}{c}\frac{4}{t}-\frac{1}{2 t^{2}} \\ -\frac{2}{2 t^{2}} \\ \frac{-2}{2 t^{2}}\end{array}\right)=\left(\begin{array}{l}\frac{2}{t}|t|\end{array}\right)=\binom{\frac{4}{t}-\frac{1}{2 t^{2}}}{2\left(\frac{4}{t}-\frac{1}{2 t^{2}}-2 \ln |t|+t(-2 \mid)+\left(2 t^{-1 / 2}\right)\left(-\frac{2}{t^{2}}-\frac{2}{t}\right)\right.}$

$$
=\left(\begin{array}{l}
\frac{2}{t}-\frac{1}{2 t^{2}}-2 \ln |t|-2 \\
\frac{8}{1}-\frac{1}{t^{2}}-4 \ln |t|-\frac{4}{t}
\end{array}\right.
$$

$$
\vec{x}_{p}(t)=\binom{\frac{2}{t}-\frac{1}{2 t^{2}}-2 \ln |t|-2}{\frac{5}{t}-4 \ln |t|-4}
$$

General solution of the non homogeneous system
$\vec{x}(t)=\vec{x}_{h}+\vec{x}_{P}=c_{1}\binom{1}{2}+c_{2}\binom{t}{2 t-1 / 2}+\binom{\frac{2}{t}-\frac{1}{2 t^{2}}-2 \ln |t|-2}{\frac{5}{t}-4 \ln |t|-4}$

