1. Find the general solution of the given differential equation.
(a) $y^{\prime}+2 t y=2 t e^{-t^{2}}$.
(b) $2 \sqrt{x} y^{\prime}=\sqrt{1-y^{2}}$.
(c) $y^{\prime}=2 x \sec y$.
(d) $t y^{\prime}+y=3 t \cos t, \quad t>0$.
2. Find the solution to the initial value problem
(a) $\frac{d y}{d x}=4 x^{3} y-y, \quad y(1)=-3$.
(b) $2 \sqrt{x} \frac{d y}{d x}=\cos ^{2} y, \quad y(4)=\frac{\pi}{4}$.
(c) $\frac{d y}{d x}+\frac{2 y}{t}=\frac{\cos t}{t^{2}} \quad y(1)=\frac{1}{2}, \quad t>0$.
3. Consider the initial value problem

$$
y^{\prime}+2 y=5-t, \quad y(0)=y_{0}
$$

Find the value y_{0} for which the solution touches, but does not cross the t-axis.
4. A 120 -gallon tank initially contains 90 lb of salt dissolved in 90 gallons of water. Brine containing $2 \mathrm{lb} / \mathrm{gal}$ of salt flows into the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$, and the well-stirred mixture flows out of the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$.How much salt does the tank contain when it is full?
5. In a certain culture of bacteria, the number of bacteria increases sixfold in 10 hrs . How long does it take for the population to double?
6. A cake is removed from an over at $210^{\circ} \mathrm{F}$ and left to cool at room temperature, which is $70^{\circ} \mathrm{F}$. After 30 \min the temperature of the cake is $140^{\circ} \mathrm{F}$. When will it be $100^{\circ} \mathrm{F}$?
7. A ball with mass 1 kg is thrown upward with initial velocity $20 \mathrm{~m} / \mathrm{s}$ from the roof of a building 50 m high. A force due to the resistance of the air of $v / 10$, where the velocity is measured in m / s, acts on the ball. Find the maximum height above the ground that the ball reaches

