1. Determine an interval in which the solutions of the following initial value problems are certain to exist.
(a) $y^{\prime}+\frac{\sin t}{t^{2}-1} y=\frac{\cot t}{t^{2}-4 t+3}, \quad y(2)=-1$.
(b) $t(t-4) y^{\prime}+t^{2} \ln (t+5) y=0, \quad y(-3)=7$.
2. State where in the $t y$-plane the hypothesis of theorem 2.4.2 are satisfied.
(a) $y^{\prime}=\frac{\ln (t y)}{1-\left(t^{2}+y^{2}\right)}$.
(b) $y^{\prime}=\left(t^{2}-y\right)^{1 / 3}$.
3. Solve the following initial value problems and determine how the interval in which the solution exists depends on the initial value t_{0}.
(a) $y^{\prime}=\frac{-4}{t} y, \quad y\left(t_{0}\right)=y_{0}$
(b) $y^{\prime}+y^{3}=0 \quad y\left(t_{0}\right)=y_{0}$.
4. Verify that both $y_{1}=1-t$ and $y_{2}=\frac{-t^{2}}{4}$ are solutions to the same initial value problem

$$
y^{\prime}(t)=\frac{-t+\left(t^{2}+4 y\right)^{(1 / 2)}}{2}, \quad y(2)=-1
$$

Does it contradict the existence and uniqueness theorem?
5. Given the differential equation $y^{\prime}=y(y-2)$
(a) Find the equilibrium solutions
(b) Graph the phase line. Classify each equilibrium solution as either stable, unstable, semistable.
(c) Graph some solutions
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty<y_{0}<\infty$, find the limit of $y(t)$ when $t \rightarrow \infty$
6. Given the differential equation

$$
y^{\prime}(t)=y^{3}-2 y^{2}+y
$$

(a) Find the equilibrium solutions
(b) Graph the phase line. Classify each equilibrium solution as either stable, unstable, semistable.
(c) Graph some solutions
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty<y_{0}<\infty$, find the limit of $y(t)$ when $t \rightarrow \infty$
7. Determine if the equations are exact and solve the ones that are:
(a) $(2 x+5 y) d x+(5 x-6 y) d y=0$.
(b) $1+\frac{y}{x}-\frac{1}{x} y^{\prime}=0$.
(c) $(\sin (2 t)+2 y) d y+\left(2 y \cos (2 t)-6 t^{2}\right) d t=0$.
8. Show that the equations are not exact. However, if you multiply by the given integrating factor, you can solve the resulting exact equations.
(a) $\left(x^{2}+y^{2}-x\right) d x-y d y=0 \quad \mu(x, y)=\frac{1}{x^{2}+y^{2}}$
(b) $3(y+1) d x-2 x d y=0, \quad \mu(x, y)=\frac{y+1}{x^{4}}$
9. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

and then solve the equation.

