1. Find the solution to the given initial value problem.
(a) $y^{\prime \prime}+4 y=t^{2}+3 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=2$.
(b) $y^{\prime \prime}+4 y=3 \sin 2 t, \quad y(0)=2, \quad y^{\prime}(0)=-1$.
(c) $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos 2 t \quad y(0)=1, y^{\prime}(0)=0$.
2. Determine a suitable form for $y(t)$ if the method of undetermined coefficients is to be used
(a) $y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin 3 t$.
(b) $y^{\prime \prime}+4 y=t^{2} \sin 2 t+(6 t+7) \cos 2 t$.
(c) $y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}+2 e^{-t} \cos t+4 t^{2} e^{-t} \sin t$.
3. Use the method of variation of parameters to find a particular solution to
(a) $y^{\prime \prime}+y=\tan x$.
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}$.
(c) $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{\left(1+t^{2}\right)}$.
4. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in . then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
5. A series circuit has a capacitor of $10^{-5} \mathrm{~F}$, a resistor of $3 \times 10^{2} \Omega$, and an inductor of 0.2 H . The initial charge of the capacitor is $10^{-6} \mathrm{C}$ and there is no initial current. Find the charge Q on the capacitor at any time t.
6. A spring is stretch 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time. Find the quasifrequency of the motion.
7. A mass weighing 4 lb stretches a spring 1.5 in . The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$,
(a) Formulate the initial value problem describing the motion of mass
(b) Solve the initial value problem.
(c) If the given external force is replaced by a force $4 \cos \omega t$ of frequency ω, find the value of ω for which resonance occurs.
8. A spring is stretched 6 in by a mass that weighs 8 lb . The mass is attached to a dashpot mechanism that has a damping constant of $0.25 \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}$ and is acted by an external force of $4 \cos 2 t \mathrm{lb}$.
(a) Find the steady-state response of this system.
(b) if the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady-state response is maximum.
