Math 308

WEEK in REVIEW 8

- 1. Find the general solution of the equation $y'' + 6y' + 9y = \frac{e^{-3x}}{1+2x}$
- 2. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in. then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
- 3. A spring is stretch 10 cm by a force of 3 N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass 5 m/s. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of 10 cm/s, determine its position u at any time. Find the quasifrequency of the motion.
- 4. A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2\cos 3t$ lb,
 - (a) Formulate the initial value problem describing the motion of mass
 - (b) Solve the initial value problem.
 - (c) If the given external force is replaced by a force $4\cos\omega t$ of frequency ω , find the value of ω for which resonance occurs.
- 5. A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of $0.25 \text{ lb} \cdot \text{s/ft}$ and is acted by an external force of $4 \cos 2t$ lb.
 - (a) Find the steady-state response of this system.
 - (b) if the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady-state response is maximum.
- 6. Find the inverse Laplace transform of the given function by using the convolution theorem.

(a)
$$F(s) = \frac{1}{s^4(s^2 - 1)}$$
.
(b) $F(s) = \frac{s}{(s+1)^2(s+4)^3}$

7. Find the Laplace transform of

(a)
$$f(t) = \int_0^t (t - \tau) e^{3\tau} d\tau$$

(b) $f(t) = \int_0^t e^{\tau} \sin(t - \tau) d\tau$

- 8. Find the solution of the initial value problem
 - (a) $y'' + 3y' + 2y = \begin{cases} 1, & 0 \le t < 10 \\ 0, & 10 \le t \end{cases}$, y(0) = 0, & y'(0) = 0.(b) $y'' + 2y' + 2y = \cos t + \delta(t - \pi/2), & y(0) = 0, & y'(0) = 0.$ (c) y'' - y' - 6y = g(t), & y(0) = 1, & y'(0) = 8.
- 9. For the equation y'' + xy' + 2y = 0
 - (a) Seek its power series solution about $x_0 = 0$; find the recurrence relation.
 - (b) Find the general term of each solution $y_1(x)$ and $y_2(x)$.
 - (c) Find the first four terms in each of two solutions y_1 and y_2 . Show that $W[y_1, y_2](0) \neq 0$.