1. Find the general solution of the equation $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
2. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in . then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
3. A spring is stretch 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass $5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial velocity of $10 \mathrm{~cm} / \mathrm{s}$, determine its position u at any time. Find the quasifrequency of the motion.
4. A mass weighing 4 lb stretches a spring 1.5 in . The mass is given a positive displacement 2 in from its equilibrium position and released with no initial velocity. Assuming that there is no damping and the mass is acted on by an external force of $2 \cos 3 t \mathrm{lb}$,
(a) Formulate the initial value problem describing the motion of mass
(b) Solve the initial value problem.
(c) If the given external force is replaced by a force $4 \cos \omega t$ of frequency ω, find the value of ω for which resonance occurs.
5. A spring is stretched 6 in by a mass that weighs 8 lb . The mass is attached to a dashpot mechanism that has a damping constant of $0.25 \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}$ and is acted by an external force of $4 \cos 2 t \mathrm{lb}$.
(a) Find the steady-state response of this system.
(b) if the given mass is replaced by a mass m, determine the value of m for which the amplitude of the steady-state response is maximum.
6. Find the inverse Laplace transform of the given function by using the convolution theorem.
(a) $F(s)=\frac{1}{s^{4}\left(s^{2}-1\right)}$.
(b) $F(s)=\frac{s}{(s+1)^{2}(s+4)^{3}}$.
7. Find the Laplace transform of
(a) $f(t)=\int_{0}^{t}(t-\tau) e^{3 \tau} d \tau$
(b) $f(t)=\int_{0}^{t} e^{\tau} \sin (t-\tau) d \tau$
8. Find the solution of the initial value problem
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=\left\{\begin{array}{ll}1, & 0 \leq t<10 \\ 0, & 10 \leq t\end{array}, \quad y(0)=0, \quad y^{\prime}(0)=0\right.$.
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=\cos t+\delta(t-\pi / 2), \quad y(0)=0, \quad y^{\prime}(0)=0$.
(c) $y^{\prime \prime}-y^{\prime}-6 y=g(t), \quad y(0)=1, \quad y^{\prime}(0)=8$.
9. For the equation $y^{\prime \prime}+x y^{\prime}+2 y=0$
(a) Seek its power series solution about $x_{0}=0$; find the recurrence relation.
(b) Find the general term of each solution $y_{1}(x)$ and $y_{2}(x)$.
(c) Find the first four terms in each of two solutions y_{1} and y_{2}. Show that $W\left[y_{1}, y_{2}\right](0) \neq 0$.
