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1. Introduction

Amenability is one of most fundamental finiteness properties in group theory and
has many applications in different branches of Mathematics. But even after almost
one hundred years of research, the boundary between the classes of amenable and
non-amenable groups is not fully understood, and amenability of many groups is
still open.

It is clear by now that there is no hope of obtaining a purely algebraic descrip-
tion of the class of amenable groups (e.g., by proving that all amenable groups can
be constructed from some “basic” amenable groups using group-theoretic construc-
tions). The property is essentially analytic in its nature. This is also reflected in
the fact that amenability of the so-called non-elementary amenable groups (roughly
speaking, groups that can not be constructed from “obviously” amenable groups)
are usually proven using dynamics of their action on topological spaces and prop-
erties of associated random walks on the groups or on the orbits of their action.

Our paper is an example of this approach. We prove amenability for a new class
of groups of dynamical origin. The proof uses analytic properties of their action,
deduces properties of the associated random walks and then uses this information
to prove amenability of the group.

Iterated monodromy groups are naturally associated with self-coverings of topo-
logical spaces (more generally with pairs of maps f, ι : X1 −→ X , where f is a
covering map). In the case the self-covering is locally expanding and the space is
compact, the iterated monodromy group (together with an additional purely al-
gebraic structure) is a complete invariant of the map up to topological conjugacy.
The relation between the iterated monodromy group and an expanding map is very
close and one can be effectively used to study the other. See [Nek05, Nek14] for
the general theory and applications.

It was shown in [Nek10] that iterated monodromy groups of expanding maps
(more generally, contracting self-similar groups) can not have free non-abelian sub-
groups. Consequently, there are no obvious reasons why they are not amenable.
In fact, no example of a non-amenable iterated monodromy group of an expanding
self-covering of a compact space is known.

Another class of groups for which amenability is an open questions are groups
generated by automata (transducers) of polynomial activity growth, defined origi-
nally in [Sid00]. It was proved in [Sid04] that such groups can not have free sub-
groups. Amenability of some groups in this class was proved in [BKN10, AAV13,
JNdlS16]. The general case remains to be open.

Both questions (amenability of iterated monodromy groups and of groups gen-
erated by automata of polynomial activity growth) remain to be out of reach of the
current methods of proving amenability.
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The goal of our paper is to show that every group in the intersection of these
two classes is amenable. This provides a new interesting class of amenable groups.
Perhaps more importantly, we show a relation of amenability to analytic and topo-
logical properties of dynamical systems.

The second section of the paper is an overview of the main definitions of the
theory of self-similar groups. Section 3 defines automata of polynomial activity
growth and gives a criterion when they generate a contracting self-similar group.
Iterated monodromy groups are defined in Section 4. The next section describes
how the iterated monodromy groups can be used to approximate the corresponding
expanding self-covering by simpler topological spaces (e.g., by graphs).

Section 6 describes the methods of proving amenability of groups developed
in [JNdlS16], and how they can be applied to groups generated by automata of
polynomially growing activity.

The last two sections contain the main results of the paper. In Section 7, we
prove that the graphs of the canonical action on the Cantor set of the iterated
monodromy group of a post-critically finite rational function is always recurrent
(i.e., that the simple random walk on it is recurrent). The proof is based on the
fact that these graphs are sub-graphs with Speiser graphs associated with the leaves
of the inverse limit of backward iterations of the function (known as the Lyubich-
Minski lamination). It was proved by Lyubich and Minski in [LM97] that the
corresponding leaves are parabolic. This implies, by results of [Doy84] and [Mer08]
that the graphs are recurrent. The latter is a crucial ingredient which can be
used to prove amenability of iterated monodromy groups generated by automata
of polynomial activity growth using the methods of [JNdlS16]. The results of the
last section of our paper supersedes this result, but the fact that the orbital graphs
of iterated monodromy groups of rational functions are recurrent is interesting by
itself, so we decided to keep it, especially since the proof is a nice combination of
classical results.

In the last section of the paper we prove that any contracting self-similar group
generated by automata of polynomial activity growth is amenable. The proof is
similar to the main result of Section 7, but instead of using conformal geometry
of surfaces, we use more general techniques of Ahlfors-regular conformal dimen-
sion. Namely, we prove that the associated limit space of the self-similar group has
conformal dimension 1, which implies that the orbital graphs are recurrent. This
approach was inspired by the papers [Thu16, Thu19].

2. Self-similar groups

We give here an overview of the basic definitions. For more, see [Nek05, Nek11,
Nek08].

2.1. Bisets. Let G be a discrete group. A G-biset is a set B together with com-
muting left and right actions of G. A self-similar group is a pair (G,B), where B is
a G-biset such that the right action has finitely many orbits and is free (the latter
means that x · g = x for x ∈ B and g ∈ G implies g = 1).

If B1 is a right G-set, and B2 is a left G-set, then we define B1⊗GB2 = B1⊗B2

as the quotient of B1 ×B2 by the equivalence relation (x1, x2) = (x1 · g, g−1 · x2),
g ∈ G. If B1 is a right H-set for some group H such that the H-action and the
G-action on B1 commute, then B1⊗B2 is naturally a left H-set. Similarly, if B2 is
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a right H-set such that the H-action and the left G-action commute, then B1⊗B2

is a right H-set.
In particular, if B1, B2 are G-bisets, then we have the biset B1⊗B2. It is easy

to prove that (B1⊗B2)⊗B3 and B1⊗ (B2⊗B3) are isomorphic as bisets, so that
for every biset B we have well defined bisets B⊗n. We define B⊗0 to be the group
G itself with the natural left and right G-actions. We denote the biset

⊔∞
n=0 B

⊗n

by B∗.
The set of right-orbits B∗/G has a natural structure of a rooted tree with the

root equal to the unique G-orbit on B⊗0 = G. A vertex vG ∈ B⊗n/G is connected
to the vertices of the form (v ⊗ x)G ∈ B⊗(n+1)/G for x ∈ B. It is not hard to
check that this is a regular rooted d-tree, where d is the cardinality of the set B/G
of the right G-orbits in B.

The left action defines a left action of G by automorphisms on the tree B∗/G.
We say that the self-similar group G is faithful if this action is faithful. In general,
the kernel of the action of G on B∗/G is the maximal normal subgroup N of G
such that for every h ∈ N and x ∈ B there exists h′ ∈ N such that h · x = x · h′.
Then the faithful quotient of (G,B) is the self-similar group (G/N,B/N), where
B/N is the set of right N -orbits.

It is easy to check that if (G,B) is a self-similar group, then (G,B⊗n) is also a
self-similar group.

2.2. Automata. Let (G,B) be a self-similar group, and let X ⊂ B be a basis
of B (i.e., a right orbit transversal). We will denote by Xn the set of elements
x1⊗x2⊗· · ·⊗xn ∈ B⊗n, and write these elements just as x1x2 . . . xn. It is checked
directly that Xn is a basis of B⊗n. In other words, every right G-orbit in B∗ has
a unique element of the set X∗ =

⋃∞
n=0 X

n. We get a bisection between the tree
B∗/G and the tree of X∗. A word v ∈ X∗ is connected in the tree X∗ to the words
of the form vx for x ∈ X. The root of the tree X∗ is the empty word corresponding
to the root of B∗/G.

After identification of the tree B∗/G with X∗ we get the corresponding left action
of G on X∗ coming from the left action on B∗/G. We call it the standard action of
G on X∗.

For every x ∈ X and g ∈ G there exist unique y ∈ X and h ∈ G such that
g · x = y · h. We denote y = g(x) and h = g|x. Then the standard action of G on
X∗ is given by the recursive rule

g(xw) = g(x)g|x(w).

More generally, if v ∈ Xn and g ∈ G, then there exists a unique element g|v ∈ G
such that g · v = g(v) · g|v in B⊗n. We have then

g(vw) = g(v)g|v(w)

for all v, w ∈ X∗ and g ∈ G. We also have

(g1g2)|v = g1|g2(v)g2|v, g|v1v2 = g|v1 |v2 .

We interpret the above recursive rule as the work of an automaton with the set
of states G which reading a letter x on the input gives g(x) to the output, and
changes its state to g|x. This automaton, if g is its initial state, will process a word
v letter by letter, and give g(v) as the output. Note that this automaton depends
on the choice of the basis X ⊂ B.
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The Moore diagram of this automaton is the graph with the set of states G
in which for every g ∈ G and x ∈ X there is an arrow starting in g, ending in
g|x, and labeled by (x, g(x)). In order to find g(x1x2 . . . xn) one has to find the
unique directed path starting in g and labeled by (x1, y1), (x2, y2), . . . , (xn, yn).
Then g(x1x2 . . . xn) = y1y2 . . . yn.

For a given g ∈ G we can consider the subgraph consisting of all vertices reachable
from g, i.e., the subgraph spanned by {g|v : v ∈ X∗}. It enough to know this
subgraph in order to compute the action of g. We call it the automaton defining g.

In general, an (invertible) automaton is a collection A of automorphisms of the
rooted tree X∗ such that for every g ∈ A and x ∈ X there exists g|x ∈ A such that
g(xw) = g(x)g|x(w) for all w ∈ X∗. The Moore diagram of A is the graph with the
set of vertices A in which for every g ∈ A and x ∈ X there is an arrow from g to
g|x labeled by (x, g(x)).

If A is an automaton, then the group of automorphisms of X∗ generated by A is
self-similar. The corresponding biset B is the set of transformations of X∗ of the
form v 7→ xg(v) for x ∈ X and g ∈ G. The left and right actions of G are given by
the post- and pre-compositions with the elements of G. More explicitly, if we write
the transformation v 7→ xg(v) just as x · g, then the biset operations are given by

g1 · (x · g) · g2 = g1(x) · g1|xgg2.

The standard action on X∗ of this self-similar group coincides with the original
action of G on X∗.

2.3. Contracting groups. Let (G,B) be a self-similar group, and let X ⊂ B be
a basis. We say that the standard action of G on X∗ is contracting if there exists a
finite set N ⊂ G such that for every g ∈ G there exists n such that g|v ∈ N for all
words v ∈ X∗ of length at least n. The smallest set N with this property is called
the nucleus of the action.

The nucleus is an automaton, i.e., for every g ∈ N and x ∈ X we have g|x ∈ N .
Accordingly, the Moore diagram of the nucleus is the graph with the set of vertices
N in which for every g ∈ N and x ∈ X there is an arrow from g to g|x labeled by
(x, g(x).

It is proved in [Nek05, Corollary 2.11.7] that if the standard action is contracting
for one basis, then it is contracting for every basis of the biset, i.e., the property of
being contracting depends only on the self-similar group (G,B). We say then that
the biset B is hyperbolic.

Note that if the action of G on X∗ is contracting, then the set of states {g|v :
v ∈ X∗} of the automaton defining g is finite.

Let (G,B) be a contracting self-similar group and X ⊂ B is a basis. Consider the
space X−ω of left-infinite sequences . . . x2x1 with the direct product topology. We
say that . . . x2x1, . . . y2y1 are asymptotically equivalent if there exists a finite subset
N ⊂ G and a sequence gk ∈ N such that gk(xk . . . x2x1) = yk . . . y2y1 for every
k ≥ 1. One can show, see [Nek05, Proposition 3.2.6], that . . . x2x1 and . . . y2y1 are
asymptotically equivalent if and only if there exists a directed path . . . e2e1 of in
the Moore diagram of the nucleus such that the arrow ei is labeled by (xi, yi).

The quotient of X−ω by the asymptotic equivalence relation is called the limit
space of (G,B). We denote it by JG. The shift . . . x2x1 7→ . . . x3x2 induces a
finite-to-one continuous map JG −→ JG, which we call the limit dynamical system
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of the self-similar group. It does not depend, up to a topological conjugacy, on the
choice of the basis.

Similarly, consider the space X−ω × G, where G is discrete. We say that two
points . . . x2x1 ·g and . . . y2y1 ·h are asymptotically equivalent if there exists a finite
set B and a sequence gk ∈ B such that gk · xk . . . x2x1 · g = yk . . . y2y1 · h in B⊗k.
Again, one can show that one can chose gk ∈ N such that gk · xk = yk · gk−1 and
g0g = h. In other words the points are asymptotically equivalent if and only if
there exists a directed path . . . e2e1 in the Moore diagram of the nucleus ending in
hg−1 and such that ei is labeled by (xi, yi). Denote by XG the quotient of X−ω×G
by the asymptotic equivalence relation.

The natural right action of G on X−ω ×G preserves the asymptotic equivalence
classes, hence XG is a right G-space. Moreover, there is a natural G-equivariant
homeomorphism XG⊗B −→ XG induced by (. . . x2x1·g)⊗(x·h) = . . . x2x1g(x)·g|xh
for xi, x ∈ X and g, h ∈ G.

One can define the limit G-space XG without choosing a basis of the biset in
the following way. For every finite subset A ⊂ B consider the space of sequences
A−ω with the direct product topology, and then pass to the direct limit of the
topological spaces A−ω with respect to the natural inclusions A−ω1 ⊂ A−ω2 for all
finite subsets A1 ⊂ A2. Let Ω be the obtained topological space. Then declare two
sequences (. . . , a2, a1) and (. . . , b2, b1) equivalent if there exists a finite set B ⊂ G
and a sequence gk ∈ B such that gk · ak ⊗ · · · ⊗ a2 ⊗ a1 = bk ⊗ · · · ⊗ b2 ⊗ b1. The
quotient of Ω by this equivalence relation is the limit G-space XG. So, in some
sense, XG is the “bounded” infinite tensor power B⊗(−ω).

The right action of G on XG is proper and co-compact, and JG is naturally
homeomorphic to the quotient space XG/G. This shows that, in fact, it is more
natural to consider JG as an orbispace, since the action of G on XG is not free.

2.4. Orbital graphs and graphs of germs. Let G be a group generated by a
finite set S and acting on a set X. The corresponding graph of the action is the
graph with the set of vertices X in which for every x ∈ X and s ∈ S there is a
directed edge starting in x and ending in s(x). We often label this edge by s. If
the action is transitive, then for every x0 ∈ X the graph of the action is naturally
isomorphic to the Schreier graph of G modulo the stabilizer Gx0

of x0 in G. Namely,
the points of X are in a bijective correspondence with the cosets hGx0

, and the
vertex corresponding to a coset hGx0

is connected to the vertex corresponding to
the coset shGx0 for every h ∈ G and s ∈ S.

In general, the orbital graph is the graph of the action of G on an orbit of the
action. The orbital graph Γx of a point x ∈ X is therefore naturally isomorphic to
the Schreier graph of G modulo the stabilizer Gx.

Suppose that X is a topological space. A germ (g, x) is the equivalence class of
the pair (g, x) with respect to the equivalence relation identifying (g1, x) and (g2, x)
if there exists a neighborhood U of x such that g1|U = g2|U .

The graph of germs Γ̃x is the graph with the set of vertices equal to the set
of germs (g, x) for g ∈ G, in which for every germ (g, x) and generator s ∈ S we
have an arrow from (g, x) to the germ (sg, x) labeled by s. Note that the map

(g, x) 7→ g(x) is a surjective covering map from the graph of germs Γ̃x to the orbital
graph Γx.

The graph of germs Γ̃x is naturally isomorphic to the Schreier graph of G modulo
the subgroup G(x) of elements of g acting identically on a neighborhood of x. It is
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Figure 1. The adding machine

easy to see that G(x) is a normal subgroup of the stabilizer Gx. In particular, the

covering map Γ̃x −→ Γx is regular (Galois) with the group of deck transformations
Gx/G(x). The group Gx/G(x) is called the group of germs at the point x.

3. Automata of polynomially growing activity

3.1. Cyclic structure. Let g be an automorphism of the tree X∗. Consider the
following function

αg(n) = |{v ∈ Xn : g|v 6= 1}|.
In other words, αg(n) counts the number of paths of length n in the Moore diagram
of g starting in g and ending in a non-trivial state. Let Γg be the Moore diagram
of g in which we delete the trivial state and all the arrows adjacent (i.e., incoming
or outgoing) to it. Then αg(n) is the number of paths of length n in Γg starting in
g. If A is the adjacency matrix for the graph Γg, then αg(n) is the sum of entries
in the column corresponding to the vertex g in the matrix An. It follows that
if g is finite state, then the formal series

∑∞
n=0 αg(n)tn is a rational function. In

particular, αg(n) grows either polynomially or exponentially. We have the following
description of the growth of αg(n). See a proof in [Sid00].

Proposition 3.1. Let g be a finite-state automorphism of X∗. The function αg(n)
grows exponentially if and only if there are two directed cycles in Γg with a common
vertex.

Otherwise αg(n) is bounded from above by a polynomial. Then the smallest
degree of a polynomial bounding αg(n) is d if and only if d + 1 is the maximal
length of sequence C1, C2, . . . , Cd+1 of pairwise different cycles of Γg such that for
every i = 1, 2, . . . , d there is a directed path from a vertex of Ci to a vertex of Ci+1.

We have

αg1g2(n) ≤ αg1(n) + αg2(n),

since (g1g2)|v 6= 1 implies that either g2|v 6= 1 or g1|g2(v) 6= 1. It follows that the set
of automorphisms g of X∗ such that αg(n) is bounded by a polynomial of degree d is
a subgroup of the group of automorphisms of X∗. Denote by Pd(α) the intersection
of this group with the group of finite-state automorphisms of X∗.

Example 3.2. Consider the automaton over the alphabet X = {0, 1} given by

a(0w) = 1w, a(1w) = 0a(w).

The Moore diagram of the automaton is shown on Figure 1. The transformation
defined by a is called the (binary) adding machine or odometer. It follows from
the structure of the automaton that it belongs to P0(X). (We have highlighted the
non-trivial cycle in the Moore diagram.)
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Figure 2. The iterated monodromy group of z2 − 1

Figure 3. Automaton in P1(X)

Example 3.3. Another example of a subgroup of P0(X) is generated by the trans-
formations

a(0w) = 1w, a(1w) = 0b(w),

b(0w) = 0w, b(1w) = 1a(w).

The corresponding Moore diagram is shown on Figure 2. The group 〈a, b〉 is the
iterated monodromy group of the complex polynomial z2 − 1, see below. In fact,
the iterated monodromy groups of post-critically finite polynomials are subgroups
of P0(X). The group 〈a, b〉 appeared (even before the iterated monodromy groups

were introduced) in [GŻ02].

Example 3.4. Consider the transformations

a(0w) = 1w, a(1w) = 0a(w),

b(0w) = 0a(w), b(1w) = 1b(w),

see the Moore diagram on Figure 3. We see that 〈a, b〉 < P1(X). The graphs of
the action of this group on the boundary of the tree were defined for the first time
in [BH05]. These graphs where studied later as orbital graphs of the group 〈a, b〉
in [BCSDN12].

3.2. Contracting subgroups of Pd(X). Let G < Pd(X) be a finitely generated
self-similar group. Let S = S−1 be a finite self-similar generating set. We consider
S as an automaton. Let N be a number divisible by the lengths of all cycles in the
Moore diagram of S. Let C be the set of words v ∈ XN such that there exists g ∈ S
such that g|v = g. In other words, C is the set of words of length N that are read
on cycles of the Moore diagram of C.
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Consider the graph Γ with the set of vertices C, where for every g ∈ S and v ∈ C
such that g|v = g, we have an arrow from v to g(v) labeled by g. Note that then
g(v) ∈ C and there is an arrow from g(v) to v labeled by g−1. Note also that if
gk, gk−1, . . . , g1 are labels of arrows in a direct path from a vertex v1 to a vertex
v2 ∈ C, then we have g|v1 = g and g(v1) = v2 for g = g1g2 · · · gk. Consider the set
G of pairs (v, g), where v ∈ C, and g is a product of labels in Γ in a path from v to
g(v). Then G is a groupoid: if (g1, v1), (g2, v2) ∈ G are such that g2(v2) = v1, then
(taking concatenation of the corresponding paths) we see that (g1g2, v2) ∈ G and
(taking inverse of the path) that (g−1

1 , g1(v1)) ∈ G.

Proposition 3.5. Let G < Pd(X) be a finitely generated self-similar group. Then
the following conditions are equivalent.

(1) The groupoid G is finite.
(2) The isotropy groups of G are finite.
(3) The groups of germs of the action of G on Xω are finite.
(4) The group G is contracting.

Proof. The groupoid G has finitely many units (the vertices of the graph Γ). Hence,
it is finite if and only if its isotropy groups are finite, so that we have (1)⇐⇒(2).

Let us show (1)=⇒(4). Suppose that the groupoid G is finite. We want to prove
that G is contracting. The proof essentially is the same as the proof that all self-
similar subgroups of P0(X) are contracting, see [BN03] and [Nek05, Theorem 3.9.12].
Let g ∈ G, and let us write g as a product g1g2 · · · gn of elements of S. Let
w = x1x2 . . . ∈ Xω, and consider the sequence of the sections

g|x1x2...xk = (g1g2 · · · gn)|x1x2...xk = g1|y1,1y1,2...y1,k)g2|y2,1y2,2...y2,k) · · · gn|yn,1yn,2...yn,k ,

where yi,1yi,2 . . . = gi+1gi+2 · · · gn(x1x2 . . .) and yn,1yn,2 . . . = x1x2 . . .. For every
i, the sequence gi|yi,1yi,2...yi,k , k = 1, 2, . . ., is a path in the Moore diagram of S.
It follows from the structure of automata of polynomial growth that this sequence
will be eventually contained in a cycle of S or will be eventually trivial. It follows
that there exists k0 such that for every i = 1, 2, . . . , n the sequence gi|yi,1yi,2...yi,k is
either trivial or belongs to a cycle of the Moore diagram of S for all k ≥ k0. Then,
for vi = yi,k0+1yi,k0+2 . . . yi,k0+N and hi = gi|yi,1yi,2...yi,k , we have

hi(vi) = vi−1, hi|vi = hi

for all i = 1, 2, . . . , n (the condition hi(vi) = vi−1 is void for i = 1). It follows that
(h1h2 · · ·hn, vn) belongs to the groupoid G. We have proved that for every g ∈ G
and x1x2 . . . ∈ Xω there exists k0 such that g|x1x2...xk0

belong to the finite set N

of elements h ∈ G such that (h, v) ∈ G for some v. It follows that the set of all
sections of the elements of N is finite and is the nucleus of G.

If G is contracting, then groups of germs of its action on Xω are finite, since their
size is bounded from above by the size of the nucleus, i.e., (4)=⇒(3).

It remains to show that (3)=⇒(2). Suppose that G < Pd(X) is a finitely gen-
erated self-similar group such that an isotropy group of G is infinite. Let us show
that there exists a point w ∈ Xω such that the group of germs G(w) is infinite.
Suppose that the isotropy group of a point v ∈ C in the groupoid G is infinite. The
isotropy group Gv consists of elements g ∈ G such that g|v = g and g(v) = v. Then
g(vω) = vω for every g ∈ Gv, and the action of every non-trivial element g ∈ Gv is
non-trivial on every neighborhood of vω, since g|vn = g for every n. It follows that
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the group Gv is faithfully represented in the group of germs at w, hence the group
of germs is infinite. �

Let C be a compact countable metrizable space. Define C0 = C, and inductively,
for a non-limit ordinal α+1, Cα+1 to be the complement of the set of isolated points
of Cα. If α is a limit ordinal, then define Cα =

⋂
β<α Cβ . Then every Cα is a

compact countable metrizable space. Note also that Cα+1 is a proper subset of Cα.
It follows that there exists a countable ordinal α such that Cα = ∅. In fact, α can
not be a limit ordinal, by compactness, so that it is equal to β + 1 for some β. Let
us call β the Cantor-Bendixson rank of C. Note that Cβ is a finite set. It is known
that the pair (β, |Cβ |) is a complete invariant of C up to homeomorphism (namely,
by a theorem of S. Mazurkiewicz and W. Sierpiński [MS20] C is homeomorphic to
the ordinal ωβ · n+ 1 with the order topology).

Proposition 3.6. Let G be a contracting group. Let XG be the limit G-space,
and let T ⊂ XG be the corresponding tile (i.e., the image of X−ω · 1 in XG. Then
G ≤ Pd(X) for some d if and only if the boundary ∂T is countable. Moreover, if
d is the smallest number such that G ≤ Pd(X), then the Cantor-Bendixson rank of
∂T is equal to d.

Proof. It is known that ∂T is the image of the set of sequences . . . x2x1 such that
there exists a path in the nucleus of G ending in a non-trivial state and labeled by
. . . (x2, y2), (x1, y1) for some yi ∈ X. Two sequences . . . x2x1 and . . . y2y1 represent
the same point of XG if and only if there exists a path labeled by . . . (x2, y2)(x1, y1)
and ending in the trivial state. Let S be the space of paths (seen as a subset of
the space of sequences of edges) in the nucleus of the group ending in a non-trivial
state. It is easy to see that S is a compact countable space if the G ≤ Pd(X). Oth-
erwise, the nucleus has two intersecting non-trivial cycles, which implies that S is
uncountable. Let π : S −→ ∂T map a path . . . , e2, e1 labeled by . . . (x2, y2), (x1, y1)
to . . . x2x1. Note that if we know . . . x2x1 and the origin of the edge en, then we
know all the edges ei for i ≤ n. It follows that the cardinality of π−1(ξ) is bounded
from above by the size of the nucleus. In particular, since π is surjective, ∂T is
countable if and only if S is countable.

Suppose that f : C1 −→ C2 is a finite-to-one surjective map, where C1 and C2 are
compact countable metrizable spaces. If a point x ∈ C2 is isolated, then f−1(x) is
open and finite, hence consists of isolated points. On the other hand, if all points of
f−1(x) are isolated, then C1 \f−1(x) is compact, hence its image C2 \{x} is closed,
i.e., x is isolated. Consequently, if C ′1 is the set of non-isolated points of C1, then
f(C ′1) is equal to the set of non-isolated points of C2. The map f : C ′1 −→ f(C ′1)
is a finite-to-one sujrective map. It follows that if C1 has finite Cantor-Bendixson
rank, then the Cantor-Bendixson rank of C1 is equal to the Cantor-Bendixson rank
of C2.

Let us order the non-trivial cycles of the Moore diagram of the nucleus of G by
saying that a cycle is greater than another cycle if there exists a directed path from
the former to the latter. If d is smallest such that G ≤ Pd(X), then d + 1 is the
length of the longest strictly decreasing sequence of cycles.

It is easy to see that a path (. . . , e2, e1) ∈ S is isolated in S if and only if all
but possibly a finite number of edges ei belong to a cycle maximal in the above
defined order. After we remove the isolated points of S we get the space S1 of
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all infinite sequences (. . . , e2, e1) inside the automaton A1 consisting of the non-
maximal cycles of the nucleus and their states. A point of S1 is then isolated if and
only if all but finitely many of its edges belong to a maximal cycle of A1. It follows
then inductively that the Cantor-Bendixson rank of S is equal to the length of
the longest strictly decreasing sequences of non-trivial cycles in the nucleus minus
one. �

Example 3.7. If (G,B) is a self-similar group, then the for different bases X of
B the standard action of G on X∗ may belong to different groups Pd(X), or not
belong to any of them. For example, the iterated monodromy group of z2 − 1 can
be defined as the group generated by

a(0w) = 1w, a(1w) = 0b(w),

b(0w) = 0w, b(1w) = 1a(w).

This group of automorphisms of the tree X∗ is contained in P0(X). If we pass to
the basis 0′ = 0, 1′ = 1 · a, then the recursive definition becomes

a(0′w) = 1′a−1(w), a(1′w) = 0′ba(w),

b(0′w) = 0′w, b(1′w) = 1′a(w).

Note that since

ba(0′w) = 1′w, ba(1′w) = 0′ba(w),

this action is a subgroup of P1(X).
If we change the basis to 0′′ = 0a, 1′′ = 1b, we get

a(0′′w) = 1′′b−1a(w), a(1′′w) = 0′′a−1b2(w),

b(0′′w) = 0′′w, b(1′′w) = 1′′b−1ab(w).

This group is not contain in Pd(X) for any d. For example, we have the following
two intersecting cycles of states of the automaton:

a|0′ = a−1b2, (a−1b2)|1′′ = ab, (ab)|1′′ = a−1bab, (a−1bab)|0′′ = a,

and

(b−1a)|1′′ = a−1b2, (a−1b2)|1′′ = ab, (ab)|0′′ = b−1a.

4. Iterated monodromy groups

4.1. Main definitions. A topological virtual endomorphism is a pair f, ι :M1 −→
M, where f : M1 −→ M is a finite degree covering, and ι is a continuous map.
In particular, a partial self-covering is a virtual endomorphism in which ι is an
embedding, i.e., it is a covering map of M by a subset of M.

Suppose that M is path-connected. Choose a basepoint t ∈ M. Then the
associated π1(M, t)-biset Bf,ι,t is the set of pairs ([`], z), where z ∈ f−1(t), and [`]
is the homotopy class of a path from t to ι(z).

The right π1(M, t)-action is given by appending the loops ([`], z) · [γ] = ([`γ], z).
(We multiply here the loops in the “unnatural”: in a path `γ the path γ is traversed
before the path `.) It is easy to see that the right action is free and that two elements
([`i], zi) belong to the same right orbit if and only if z1 = z2.

The left π1(M, t)-action is defined by lifting loops using f , and then mapping
them back to M using ι. Namely, for ([`], z) ∈ Bf,ι,t and γ ∈ π1(M, t), there
is a unique lift γz of γ by f that starts at z. Let z′ be the end of γ. Then we
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define [γ] · ([`], z) = ([ι(γz)`, z
′). (Note that we need to record z in the definition of

elements of Bf,ι,t only in the case that ι is not injective on f−1(t).)
Topological virtual endomorphisms can be naturally iterated. Namely, denote

by Mn the set of all sequences (x1, x2, . . . , xn) ∈ Mn
1 such that f(xi) = ι(xi+1).

Then the pair of maps fn(x1, x2, . . . , xn) := f(xn) and ιn(x1, x2, . . . , xn) := ι(x1)
is a virtual endomorphism from Mn to M, which we call the nth iteration of the
virtual endomorphism f, ι : M1 −→ M. One can show that the π1(M, t)-biset
associated with fn, ιn :Mn −→M is naturally isomorphic to B⊗nf,ι,t.

Definition 4.1. The iterated monodromy group IMG(f, ι) of f, ι : M1 −→ M is
the faithful quotient of the self-similar group (π1(M, t),Bf,ι,t).

The tree B∞f,ι,t/π1(M, t) on which the iterated monodromy group acts is natu-
rally isomorphic to the tree of preimages Tt, which is defined as the set of points
(x1, x2, . . . , xn) ∈ Mn such that f(xn) = t, with t ∈ M0 as the root, and a
vertex (x1, x2, . . . , xn) ∈ Mn connected to the vertex (x2, x3, . . . , xn) ∈ Mn−1.
The fundamental group π1(M, t) acts on Tt by lifting loops by the covering maps
fn : Mn −→ M. Namely, for every vertex z = (x1, x2, . . . , xn) of Tt and every
loop γ ∈ π1(M, t) there is a unique lift of γ by fn starting in z. The end of this
lift is a vertex of Tt which is the image of z by the action of γ.

The iterated monodromy group is the group of the automorphisms of the tree
Tt defined by the elements of the fundamental group.

In the case of a partial self-covering (i.e., when ι is the identical embedding of a
subsetM1 toM), map (x1, x2, . . . , xn) 7→ x1 is a homeomorphism ofMn with the
domain of the nth iteration fn of the partial self-covering. Then the set of vertices
of the tree of preimages Tt is just the disjoint union of the sets f−n(t).

A basis of Bf,ι,t is, by definition, a choice of homotopy classes [`z] of paths
connecting t to ι(z) for each z ∈ f−1(t). We will usually choose an alphabet X of
cardinality equal to the degree of f , a bijection Λ : X −→ f−1(t), and a collection
of paths `x connecting t to ι(Λ(x)). Then the corresponding standard action of the
fundamental group (and of the iterated monodromy group) is described as follows
(the proof is just a direct application of the definition of Bf,ι,t).

Proposition 4.2. For γ ∈ π1(M, t) and x ∈ X, denote by γx the lift of γ by f
starting in Λ(x), and denote by γ(x) ∈ X the letter such that Λ(γ(x)) is the end of
γx. Then the recurrent rules

γ(xv) = γ(x)(`−1
γ(x)ι(γx)`x)(v)

define the standard action of π1(M, t) on X∗ conjugate to the iterated monodromy
action of π1(M, t) on the tree of preimages Tt.

4.2. Complex rational functions. A rational function f ∈ C(z) is said to be
post-critically finite if the forward orbit of every critical point of f is finite. The
union of the orbits of the critical values is called the post-critical set of f and is
denoted Pf .

If f is post-critically finite, then f : Ĉ \ f−1(Pf ) −→ Ĉ \Pf , where Ĉ is the Rie-
mann sphere, is a partial self-covering of a finitely punctured sphere. The iterated
monodromy group IMG(f) of f is, by definition, the iterated monodromy group of
this partial self-covering.

The iterated monodromy groups of rational functions can be computed using
Proposition 4.2. For instance, the iterated monodromy group of z2 − 1 is given in
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Example 3.7. We will see more examples of iterated monodromy groups of rational
functions below.

4.3. Natural extension. Let f, ι :M1 −→M be a topological virtual endomor-

phism, and let Mn be as above. Denote by M̂ the inverse limit of the sequence

M f←−M1
f1←−M2

f2←− · · · ,

where fn :Mn+1 −→Mn is the map (x0, x1, . . . , xn) 7→ (x1, x2, . . . , xn).

The space M̂ is naturally identified with the space of sequences (. . . , x2, x1) ∈
M−ω1 such that f(xi) = ι(xi+1).

The subset of M̂ consisting of points (. . . , x2, x1) such that f(x1) = t is naturally
identified with the boundary ∂Tt of the tree of preimages. In particular, the iterated
monodromy group IMG(f, ι) acts on it by homeomorphisms.

The next lemma follows directly from the definitions.

Lemma 4.3. Let f :M1 −→M be a partial self-covering. Two points x, y ∈ ∂Tt
belong to one path connected component of M̂ if and only if x and y belong to one
orbit of the iterated monodromy group action.

We get then the following description of the orbital graphs of the action of the
iterated monodromy group.

Corollary 4.4. If S is a set of loops generating IMG(f, ι) and let Γ0 be the graph
equal to the union of the elements of S. Then the orbital graphs with respect to S
of the action of IMG(f, ι) on the boundary of the tree of preimages are isomorphic

to the preimages of Γ0 in the path-connected components of M̂.

5. Contracting models

The first two subsection is an overview of [Nek14].

5.1. Basic definitions and results. Let (G,B) be a self-similar group. Let X be
a locally compact metric space with a right proper and co-compact G-action. Then
X ⊗B is also a right G-space. If X is a graph and G acts on it by automorphisms,
then X ⊗B is also a graph.

We are interested in G-equivariant maps I : X ⊗B −→ X . In order to define I,
one has to define the map I(· ⊗ x) : X −→ X for every x ∈ X. These maps have
to satisfy the conditions I(t · g ⊗ x) = I(t ⊗ g · x) and I(t ⊗ x · g) = I(t ⊗ x) · g.
In particular, if we choose a basis X of B, then it is enough to define I(· ⊗ x) for
x ∈ X subject to the condition

I(t · g ⊗ x) = I(t⊗ g(x)) · g|x.

for all g ∈ G and x ∈ X. Any collection of maps I(· ⊗ x) : X −→ X satisfying the
above condition defines a G-equivariant map I : X ⊗B −→ X .

The map I can be used then to define G-equivariant maps Imn : X ⊗B⊗m −→
B⊗n by the rule

Imn (t⊗x1⊗x2⊗· · ·⊗xm) = I(. . . I(I(t⊗x1)⊗x2) . . .⊗xm−n)⊗xm−n+1⊗· · ·⊗xm,

for all m > n ≥ 0. We have Ink ◦ Imn = Imk for all m > n > k.
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Lemma 5.1. Suppose that X is path-connected, and the action of G on X is free.
Let M = X/G and M1 = (X ⊗B)/G be the corresponding spaces of orbits. Then
the correspondence ξ⊗x 7→ ξ from X ⊗B to X induces a well defined covering map
f :M1 −→M.

Proof. The map f is well defined, since ξ1 ⊗ x and ξ2 ⊗ y belong to one G-orbit
only if ξ1 and ξ2 belong to the same G-orbit.

Since the action of G on X is free and proper, for every ξ ∈ X there exists a
neighborhood U of ξ such that for every g ∈ G either g = 1 or U · g ∩ U = ∅. The
images of U ⊗ x and U ⊗ y in M1 intersect if and only if there exists g ∈ G and
ξ1, ξ2 ∈ U such that ξ1 ⊗ x = ξ2 ⊗ y · g. But the latter means that there exists
h ∈ G such that ξ1 · g = ξ2 and g−1 · x = y · g. The first equality implies g = 1 and
ξ1 = ξ2. We see that the images U ⊗x and U ⊗ y inM intersect if and only if they
coincide. Consequently, the image of U in M is evenly covered by f . �

If I : X⊗B −→ X is G-equivariant, then it induces a continuous map ι :M1 −→
M. We see that every G-equivariant map I naturally defines a topological virtual
endomorphism f, ι :M1 −→M for M = X/G and M1 = X ⊗B/G.

Let us show that the iterated monodromy group IMG(f, ι) of the constructed
topological virtual endomorphism coincides with the faithful quotient of (G,B).
Let let t be a basepoint of M equal to the orbit of a point ξ ∈ X . If γ is a loop in
M based at t, then its lift to X starting in ξ will end in ξ ·φ(γ) for some φ(γ) ∈ G.
The map φ : π1(M, t) −→ G will be a well defined epimorphism. Elements of Bf,ι,t

are pairs ([`], z), where z is the orbit of a point ξ ⊗ x for some x ∈ B, and ` is a
path from t to ι(z). The lift of ` to X starting in ξ will end in a point in the G-orbit
of I(ξ⊗x). Note that the points I(ξ⊗x · g) = I(ξ⊗x) · g are different for different
g. Consequently, there is a unique element x ∈ B such that the lift of ` starting
in ξ ends in I(ξ ⊗ x). We get a surjective map Φ : ([`], z) 7→ x from Bf,ι,t to B.
It is checked then directly that Φ and φ preserve the biset structures, which will
imply that the standard actions of G and π1(M, t) on the respective rooted trees
will coincide.

We see that finding a G-space X and an equivariant map I : X ⊗B −→ X is es-
sentially equivalent to realizing G as the iterated monodromy group of a topological
correspondence.

The case when the action of G on X is non-free can be also included, if we
naturally extend the notion of a topological virtual endomorphism to orbispaces.
We will not do it in this paper, but just use an essentially equivalent (and only
slightly less elegant) approach of proper G-spaces and G equivariant maps instead.

5.2. Contracting virtual endomorphisms. As we have seen the maps Imn :
X ⊗B⊗m −→ X ⊗B⊗n satisfy Ink ◦ Imn = Imk . In particular, we can pass to the
inverse limit of the spaces X ⊗B⊗n with respect to the maps Imn .

The following theorem is proved in [Nek14]. It shows that if I : X ⊗B −→ X
is contracting, then the G-spaces X ⊗B⊗n converge to the limit G-space XG. In
particular, XG can be defined as the unique proper co-compact G-space such that
there exists a G-equivariant contracting homeomorphism XG⊗B −→ XG. In terms
of topological correspondences, it says that if f, ι : M1 −→ M is such that f is
a local isometry and ι is locally contracting, then Mn converge to the limit space
JG of the iterated monodromy group G = IMG(f, ι), so that fn : Mn+1 −→ Mn
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converge to the limit dynamical system and ι : Mn+1 −→ Mn converge to the
identity homeomorphism.

Theorem 5.2. Let I : X ⊗B −→ X be a G-equivariant map such that there exists
λ ∈ (0, 1) such that for all t1, t2 ∈ X and x ∈ B we have |I(t1 ⊗ x)− I(t2 ⊗ x)| ≤
λ|t1 − t2|. Then the inverse limit of the G-spaces X ⊗ B⊗n is G-equivariantly
homeomorphic to the limit G-space XG.

Note that it is enough to check the contraction condition for x belonging to a
basis of B.

The limits of the maps Imn are G-equivariant maps I∞n : XG −→ X ⊗B⊗n.
It is shown in [Nek14] that for every contracting group (G,B) there exists n ≥ 1,

an affine simplicial complex X , and a piecewise affine map I : X ⊗ B⊗n −→ X
satisfying the conditions of Theorem 5.2.

5.3. p-contracting maps. Let (G,B) be a self-similar group, and let X ⊂ B be a
basis of the biset. Let Γ be a connected locally finite metric graph (i.e., a locally
finite one-dimensional CW-complex such that every edge (1-cell) is isometric to
[0, l] for some l > 0). We will denote the length of a path γ in Γ by l(γ). Let G act
on it from the right by a proper co-compact isometric action.

Suppose that I : Γ ⊗ B −→ Γ is such that the maps I(· ⊗ x) : Γ −→ Γ are
piecewise linear. We say that I is p-contracting if there exists λ ∈ (0, 1) such that
for almost all points t of Γ we have

λ := ess sup
t∈Γ

∑
x∈X

∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p < 1.

If we denote Ix(t) = I(t⊗x), then we have In0 (t⊗x1x2 . . . xn) = Ixn(. . . Ix2
(Ix1

(t))),
so that

dIn0 (t⊗ x1x2 . . . xn)

dt
=
dIn−1

0 (s⊗ x2x3 . . . xn)

ds

∣∣∣∣
s=I(t⊗x1)

dI(t⊗ x1)

dt
.

Consequently,

ess sup
t∈Γ

∑
v∈Xn

∣∣∣∣dIn0 (t⊗ v)

dt

∣∣∣∣p =

ess sup
t∈Γ

∑
x∈X

∑
v∈Xn−1

∣∣∣∣∣ dIn−1
0 (s⊗ v)

ds

∣∣∣∣
s=I(t⊗x)

∣∣∣∣∣
p

·
∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p ≤
ess sup
t∈Γ

∑
x∈X

(
ess sup
s∈Γ

∑
v∈Xn−1

∣∣∣∣dIn−1
0 (s⊗ v)

ds

∣∣∣∣p
)
·
∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p =(
ess sup
s∈Γ

∑
v∈Xn−1

∣∣∣∣dIn−1
0 (s⊗ v)

ds

∣∣∣∣p
)
·

(
ess sup
t∈Γ

∑
x∈X

∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p
)

=

λ

(
ess sup
s∈Γ

∑
v∈Xn−1

∣∣∣∣dIn−1
0 (s⊗ v)

ds

∣∣∣∣p
)
,

hence for every n ≥ 1 we have

ess sup
t∈Γ

∑
v∈Xn

∣∣∣∣dIn0 (t⊗ v)

dt

∣∣∣∣p ≤ λn.
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We will denote by l(γ) the length of a path γ.

Proposition 5.3. Suppose that I : Γ ⊗B −→ Γ is p-contracting, and let λ be as
in the definition. Then for every path γ in Γ we have∑

v∈Xn
l(In0 (γ ⊗ v))p ≤ λnl(γ)p

for every n.

Proof. Let γ : [0, L] −→ Γ be a geodesically parametrized path in Γ. Then for every

v ∈ Xn the path In0 (γ ⊗ v) has length
∫ L

0

∣∣∣dIn0 (γ(t)⊗v)
dt

∣∣∣ dt. We have, by Jensen’s

inequality, (
1

L

∫ L

0

∣∣∣∣dIn0 (γ(t)⊗ v)

dt

∣∣∣∣ dt
)p
≤ 1

L

∫ L

0

∣∣∣∣dIn0 (γ(t)⊗ v)

dt

∣∣∣∣p dt.
Consequently,∑

v∈Xn
(l(In0 (γ ⊗ v))p ≤ Lp−1

∫ L

0

∑
v∈Xn

∣∣∣∣dIn0 (γ(t)⊗ v)

dt

∣∣∣∣p dt ≤ Lpλn,
which finishes the proof. �

6. Amenability of groups

6.1. Definitions. A discrete group G is said to be amenable if there exists a map
µ : 2G −→ [0, 1] such that µ(A ∪ B) = µ(A) + µ(B) for any two disjoint subsets
A,B ⊂ G, µ(G) = 1, and µ(gA) = µ(A) for all A ⊂ G and g ∈ G.

By a theorem of Tarsky, a group G is amenable if and only if it does not admit a
paradoxical decomposition, i.e., a decomposition into a disjoint union G = A1tA2t
. . .tAn tB1 tB2 t . . .tBm for which there exist g1, g2, . . . , gn, h1, h2, . . . , hm ∈ G
such that G = g1A1 t g2A2 t . . . t gnAn = h1B1 t h2B2 t . . . t hmBm.

Amenability was introduced by J. von Neumann in [vN29] in his analysis of the
Hausdorff-Banach-Tarsky paradox. He showed that the class of amenable groups
is closed under passing to a subgroup and quotients, under group extensions, and
direct unions of groups. Finite groups are obviously amenable. It is also not hard
to show that Z is amenable. In general, a group is called elementary amenable if
it can be constructed from finite groups and Z by the above mentioned operations
(applied transfinitely). On the other hand, it is also not hard to show that free
non-abelian groups are not amenable. Consequently, every group containing a free
subgroup is not amenable.

For a long while these where the only two classes for which amenability or non-
amenability was known. The first example of an amenable group not belonging to
the class of elementary amenable groups is the Grigorchuk group of intermediate
growth [Gri80]. The first examples of non-amenable groups not containing free
subgroups are infinite Burnside groups [Ol′80].

The border between the class of amenable and non-amenable groups is still not
very well understood. The most notorious example is the Thompson group [Tho80,
CFP96], amenability of which remains to be a famous open problem. There are
many other examples of groups and classes of groups amenability of which is open.

For example, it is not known if all contracting self-similar groups are amenable.
Similarly, it is not known if the groups Pd(X) are amenable for all d and |X|. It is
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known that P0(X) and P1(X) are amenable, see [BKN10] and [AAV13], respectively.
(See also [JNdlS16], for a more general approach to both results.)

Note that it is known that neither contracting groups nor the groups Pd(X) con-
tain free subgroups, see [Sid04] and [Nek10]. It is also known for many groups
in these classes that they do not belong to the class of elementary amenable
groups [Jus18].

6.2. Amenability of topological full groups. Amenability of many non-elementary
amenable groups can be proved using the techniques of extensively amenable ac-
tions [JM13, JNdlS16, JMMdlS18].

Definition 6.1. Let G be a group acting on a topological space X . The (topolog-
ical) full group of the action is the group of homeomorphisms f : X −→ X such
that for every x ∈ X there exists a neighborhood U of x and an element g ∈ G such
that g|U = f |U . In other words, a homeomorphism belongs to the full group if it
locally belongs to G.

Example 6.2. Consider the Cantor set Xω of infinite sequences over a finite al-
phabet X. Denote by Gn the group of homeomorphisms of Xω isomorphic to the
symmetric group SXn of all permutations of Xn acting naturally on Xω by the action
on the prefixes. We obviously have Gn ≤ Gn+1 for every n. Denote by SX∞ the
direct union of the groups Gn. Note that SX∞ is a topological full group (of its own
action), i.e., every homeomorphism locally belonging to SX∞ belongs to it. Note
also that SX∞ is amenable, since it is locally finite.

Example 6.3. The intersection of the group of automorphisms of the tree X∗ with
the group from the previous example is called the group of finitary automorphisms
of the tree X∗. It consists of automorphisms g for which there exists n such that
g|v = 1 for all words v ∈ X∗ of length at least n (equivalently, for all v ∈ Xn). This
group is isomorphic to the inductive limit of the iterated permutational wreath
products SX o SX o · · · o SX. The group of all automorphisms of X∗ is isomorphic to
the projective limit of these finite groups.

The following theorem from [JNdlS16] gives a method of extending amenable
full groups.

Theorem 6.4. Let H be a group of homeomorphisms of a compact space X such
that the topological full group of the action is amenable. Let G be a finitely generated
group of homeomorphisms of X . Suppose that the following conditions are satisfied.

(1) For every g ∈ G there exists a finite set of points Σg ⊂ X such that for
every y ∈ X \ Σg there exists h ∈ H and a neighborhood U of y such that
h|U = g|U .

(2) The orbital graphs of the action (G,X ) are recurrent.
(3) The groups of germs of the action (G,X ) are amenable.

The the group G and its topological full group are amenable.

Here a graph is said to be recurrent if the simple random walk on it is recurrent,
i.e., returns to the origin with probability 1. Note that it is enough to check
condition (1) for generators of G.

Theorem 6.5. Let G < Pd(X) be a finitely generated self-similar group. If the
orbits of G on Xω are recurrent, then G is amenable.
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It is an open question if the condition of recurrence of the orbits can be dropped.
It was proved in [AAV13] that the orbits are always recurrent for d ≤ 1 (see
also [JNdlS16]). It was shown in [AV14], however, that there are examples of
subgroups of Pd(X) with transient orbits for every d ≥ 3.

Proof. The proof is by induction on the degree d, where we include the base case
of “negative one” degree corresponding to the group of finitary automorphisms of
X∗, which is amenable as a locally finite group.

Let (G,X) be a self-similar group. Then the full group of the action of (G,Xω)
consists of all homeomorphisms g of Xω for which there exists n, a permutation σ ∈
SXn , and a collection gv ∈ G, v ∈ Xn, such that g(x1x2 . . .) = σ(x1x2 . . . xn)gx1x2...xn(xn+1xn+2 . . .)
for all x1x2 . . . ∈ Xω. In other words, the full group is the natural direct union of the
groups GXn n SXn . In particular, the full group of the action (G,Xω) is amenable
if and only if G is amenable.

Suppose that we know that the theorem is true for all degrees less than d. Let
G be as in the theorem. Let G be a group satisfying the conditions of the theorem.
Let N be its nucleus, and let H be the group generated by N ∩ Pd−1(X).

The orbital graphs of the action (H,Xω) are subgraphs of the orbital graphs
of (G,Xω), therefore they are also recurrent (see [Woe00, Corollary 2.15]). Since
H ≤ Pd−1(X), this implies that H is amenable, by the inductive hypothesis. Con-
sequently, the topological full group of the action (H,Xω) is amenable.

It follows from the structure of automata in Pd(X) that for every g ∈ N there
exists a finite set of points Σg ⊂ Xω (the infinite sequences read along the cycles
of states not belonging to Pd−1(X)) such that for every x1x2 . . . 6∈ Σg there exists
n such that g|x1x2...xn ∈ Pd−1(X). It follows that condition (1) of Theorem 6.4 is
satisfied. Condition (2) is a part of the assumption.

It remains to prove condition (3). Suppose that g ∈ G fixes a point w = x1x2 . . .
of Xω. There exists n such that g|x1x2...xn ∈ N . The germ (g, x1x2 . . .) is uniquely
determined by w, n, and g|x1x2...xn . In particular, the group of germs G(w) has
not more than |N | elements. Consequently, there exists n and a group N ⊂ N
isomorphic to G(w). Namely, every non-trivial element h ∈ N fixes xn+1xn+2 . . .,
all sections h|xn+1xn+2...xn+m

are non-trivial, and for every g ∈ G fixing w there
exists m and h ∈ N such that g|x1x2...xn+m

= h|xn+1xn+2...xn+m
. The map g 7→ h

induces then the isomorphism of G(w) with N .
Note that it follows from the fact that the sections h|xn+1xn+2...xn+m

are non-
trivial that the sequences xn+1xn+2 . . . and (h|xn+1xn+2...xn+m

)m≥1 are eventually
periodic, so by changing n we may assume that they are periodic. If k is the
period, then every h ∈ N is uniquely determined by the permutations defined by
h, h|xn+1 , hxn+1xn+2 , . . . , hxn+1xn+2...xn+k−1

on X and by the sections h|xn+1xn+2...xn+iy

for y ∈ X \ xn+i+1. Note that the sections belong to Pd−1(X). It follows that N
is isomorphic to a subgroup of the kth direct power of wreath products of H with
symmetric groups S|X|−1. As we assume that H is amenable, this implies that the
groups of germs of G are amenable. �

7. Rational functions with IMG(f) < Pd(X)

Theorem 7.1. Let f be a post-critically finite rational function. Then the orbital
graphs of the action of IMG f on Xω are recurrent.
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Proof. Consider the inverse limit of the sequence Ĉ f←− Ĉ f←− Ĉ f←− · · · and
remove from it the points (x0, x1, x2, . . .) containing infinitely many critical points
(i.e., the sequences contained in the superattracting cycles of f). Let L be the
corresponding space. It is the Lyubich-Minsky lamination studied in [LM97].

The space L contains as an open subset the inverse limit X̂ of the iterations of

the partial self-covering f : Ĉ \ f−1(Pf ) −→ Ĉ \Pf . The difference L \ X̂ is the set
of sequences (x0, x1, x2, . . .) ∈ L such that x0 ∈ Pf , since Pf is forward-invariant.
Since Pf is finite, there exists a neighborhood U of x0 homeomorphic to a disc and
not containing any other point of Pf . Since f is a local homeomorphism at all but
finitely many points xi, and acts in some local charts at xi as zk acts at zero for

the remaining xi, the full preimage Û of U in L will be homeomorphic to a direct
product U1 × C of a disc U1 with a Cantor set C such that the projection map

Û −→ U is of the form (t, ξ) 7→ (φ(t), x0), where φ : U1 −→ U is a finite degree
branched covering. It follows that two points belong to the same path-connected

component of X̂ if and only if they belong to the same path-connected component
of L.

Consider an IMG(f)-orbit in ∂Tt, and let L be the corresponding path connected

component of L. The projection is a continuous map φ : L −→ Ĉ such that the

post-critical set Pf is equal to the union of Ĉ \ φ(L) with the set of critical values
of f . The surface L supports a holomorphic structure obtained by pulling back by

φ the holomorphic structure of Ĉ. Accordingly, we can talk about the holomorphic
type (hyperbolic or parabolic) of L.

Let us describe, following [Mer08], the Speiser graph associated with the map

φ : L −→ Ĉ. Note that Pf is the union of the set Ĉ \ φ(L) and the set of critical
values of f . Find a simple closed curve C passing through each point of Pf . It will

separate the sphere Ĉ into two parts A and B, while Pf will separate the curve C
into |Pf | arcs C1, C2, . . . , C|Pf |. Choose points a ∈ A, b ∈ B, and for every arc Ci
connect a to b by a simple curve intersecting C in a single point contained in the

interior of Ci. Let Γ0 be the obtained graph. It subdivides Ĉ into |Pf | regions each
of which contains exactly one point from Pf . Add now for every point z ∈ Pf an
infinite sequence of concentric circles around z converging to z and contained in

the corresponding region of Ĉ \Γ0. After that connect z to a and to b by segments
intersecting each of the circles once. See Figure 7. Let Γ1 be the obtained graph.

The extended Speiser graph of φ : L −→ Ĉ is the graph φ−1(Γ1). It is shown
in [Mer08], using the results of [Doy84], that L is euclidean if and only if the
extended Speiser graph is recurrent. Note that Γ0 is the union of a set of loops

based at a and generating π1(Ĉ \ Pf , a). Therefore by Corollary 4.4, the extended
Speiser graph contains the orbital graph of IMG(f). Since subgraphs of recurrent
graphs are recurrent, the recurrence of the extended Speiser graph will imply the
recurrence of the orbital graph. But it is shown in [LM97, Proposition 4.5] that all
path-connected components of L are parabolic. �

Combining Theorems 7.1 and 6.5 we get the following.

Corollary 7.2. Suppose that f is a post-critically finite rational function such that
a standard action of IMG f is generated by an automaton of polynomial activity
growth. Then IMG f is amenable.
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Example 7.3. The iterated monodromy group of the mating of z2−1 with the rab-
bit polynomial is generated by the union of the corresponding iterated monodromy
groups of polynomials:

s0 = σ(s−1
0 , s0s1), s1 = (s0, 1),

r0 = σ((r0r1)−1, r0r1r2), r1 = (r0, 1),

r2 = (r1, 1),

and is a subgroup of P1. See the Julia set of the mating on Figure 4, which can be

realized as the function f(z) = (1+i
√

3)/2+z2

1−z2 . One can not cut it into two disjoint
pieces by removing finitely many points, so no standard self-similar action of the
iterated monodromy group is generated by bounded automata, see Proposition 3.6.

Example 7.4. An interesting family of rational functions with iterated monodromy
groups generated by automata of polynomial activity growth of arbitrary degree is
{fc(z) = 1 + c

z2 : c ∈ C}.
For example, the iterated monodromy group of 1 + c

z2 for c = −3−
√

5
2 ≈ −2.618

is generated by

a1 = σ(a3, a
−1
2 ), a2 = (a1, 1), a3 = σ(1, a−1

3 ).

It is easy to see that it is a subgroup of P1(X), see Figure 5.
The Julia set of this rational function is shown on Figure 6.

Example 7.5. The rational function 1− 3+
√

5
2z2 has a critical cycle of length 4 (which

can be seen as the result of doubling of the critical cycle of the rational function
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Figure 4. Rabbit-Basilica mating

Figure 5. Automaton generating IMG
(

1− 3+
√

5
2z2

)

z−2). Doubling the length of the cycle, i.e., by tuning the rational function by
z2−1, we will get a sequence of rational functions in the family 1+ c

z2 with iterated
monodromy groups in Pd for arbitrary d. See, for example, the Julia sets of rational
functions with iterated monodromy groups generated by automata of quadratic and
cubic activity growths on Figure 7.
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Figure 6. The Julia set of 1− 3+
√

5
2z2

Figure 7. Julia sets with iterated monodromy groups contained
in P2 and P3
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Proposition 7.6. Let f be a post-critically finite rational function such that there
exists a tree T on the Riemann sphere such that it contains all post-critical points
of f , satisfies f−1(T ) ⊃ T , and intersects the Julia set of f in a countable set.
Choose a point t /∈ T , and let `x be connecting paths as in Proposition 4.2 such that
`x do not intersect T . Then the corresponding action of IMG(f) is a subgroup of
Pn(X) for some n.

For instance, for the rational functions from Examples 7.4 and 7.5 one can take
T to be the interval [a,∞], where a is the smallest post-critical point of the corre-
sponding function.

Proof. The homeomorphism from the limit space of IMG(f) to the Julia set of
f maps the point represented by a sequence . . . x2x1 to the endpoint of the path
`...x2x1 equal to the concatenation of `x1 , a lift of `x2 by f , a lift of `x3 by f2, etc.,
see...

The corresponding point belongs to the image of the boundary of the tile T (see
Proposition 3.6, if and only if there exists a sequence . . . y2y1 ∈ X−ω mapped to the
same point of the Julia set and such that `−1

...y2y1`...x2x1
is a non-trivial element of

the fundamental group of the sphere minus the post-critical set. By the choice of
the paths `x, and by forward invariance of T , the (open) paths `...x2x1 are disjoint
with T . If the loop `−1

...y2y1`...x2x1
is disjoint with T , then it is a trivial element of the

fundamental group. It follows that the image of the boundary of T is contained in
T . The map from T to the Julia set is finite-to-one. Consequently, ∂T is countable,
and Proposition 3.6 finishes the proof. �

Some properties of such rational functions and their Julia sets... Mention a paper
by Schleicher, Hlushchenko, Dudko ???...

8. General case

8.1. Algebras Ap. Let (G,B) be a contracting self-similar group. Recall that we
denoted B∗ =

⋃
n≥0 B

⊗n. The set B∗ is a semigroup with respect to the operation

v⊗u, and it contains the group G = B⊗0. The semigroup B∗ is generated by X∪S,
where S is a generating set of G and X is a basis of B. It follows from the fact that
the right action of G on B is free that the semigroup B∗ is left-cancellative, i.e.,
that v ⊗ v1 = v ⊗ v2 implies v1 = v2.

Every v ∈ B∗ induces therefore an injective map u 7→ v ⊗ u and the associated
isometry

Lv(δu) = δv⊗u

of `2(B∗). C∗-algebra related to the operators Lv is one of subjects of the pa-
per [Nek09].

Let X be a basis of B. Then B∗ is naturally identified with the direct product
X∗ × G. We get a natural topology on X−ω × G ∪B∗ given by the basis of open
sets of the form X−ω · v · g∪X∗ · v · g for v ∈ X∗, g ∈ G. This is the natural topology
identifying X−ω with the boundary of the tree with the set of vertices X∗ in which
a vertex v is connected to vertices of the form xv for x ∈ X.

Let XG ∪ B∗ be the quotient of the topological space X−ω × G ∪ B∗ by the
asymptotic equivalence relation on X−ω × G. Consider the algebra C0(XG ∪B∗)
of compactly supported continuous functions XG ∪B∗ −→ C. We have a natural
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inclusion C0(XG∪B∗) ⊂ C0(X−ω×G). Note that since B∗ is dense in X−ω×G∪B∗,
we have a natural faithful representation ρ of C0(X−ω ×G ∪B∗) on `2(B∗).

Let p > 1. Denote by Ap the subset of C0(XG) consisting of functions f for

which there exists f̃ ∈ C0(XG ∪B∗) such that f is equal to the restriction of f̃ to
XG and ∑

v∈B∗
|f̃(u⊗ v)− f̃(v)|p <∞,

for every u ∈ B∗.
Equivalently, it is the subset of functions f for which there exists an extension

f̃ ∈ C0(XG ∪ B∗) such that [ρ(f̃), Lu] belongs to the Schatten ideal Bp = {A ∈
B(`2(B∗)) : Tr(|A|p) <∞} for every u ∈ B∗. Using the fact that Bp is an ideal,
it is easy to check that Ap is a ∗-subalgebra of C0(XG), and one has to check the
p-summability condition only for u ∈ S ∪ X, where S is a generating set of G.

Since Ap is a ∗-sub-algebra, it separates the points of XG if and only if it is dense
in C0(XG). We obviously have Ap ⊆ Aq for p ≤ q.

It follows that the set of values p for which Ap is dense is a half-interval (pc,∞)
or [pc,∞) for some pc. It follows from [BK15, Theorem 3.8] and [Nek03] (see
also [Nek05, Theorem 3.8.8]) that pc is the Ahlfors-regular conformal dimension of
JG with respect to the natural representation of JG as the boundary of a Gromov
hyperbolic space B∗/G, but we will not use this in our paper.

Definition 8.1. Let Γ be a connected graph of bounded degree. Let V and E be
the sets of vertices and edges of Γ, respectively. For a function f : V −→ R, denote
by ∇f : E −→ R the function given by ∇f(e) = |f(v1) − f(v2)|, where v1 and v2

are the endpoints of e. We say that it is p-parabolic if for every vertex v of Γ there
exists a sequence of finitely -supported functions fn : V −→ R such that fn(v) = 1
and

∑
e∈E ∇fn(e)p → 0 as n→∞.

It is known that recurrence of a simple random walk on a graph is equivalent to
its 2-parabolicity, see [Woe00, Theorem 2.12].

Theorem 8.2. If the algebra Ap is dense in C0(XG), then the orbital graphs of the
action of G on Xω are p-parabolic.

Proof. We will prove that the graphs of germs of the action are p-parabolic. The
statement of the theorem will follow, since the graphs of germs are finite-to-one
covers of the graphs of the action.

Denote by T the image of X−ω ∪ X∗ in XG ∪ B∗. We know that T · N is a
neighborhood of T . Since Ap is dense, there exist a function f ∈ C0(XG∪B∗) such
that [ρ(f), π(g)] ∈ Bp for every g ∈ G, and such that its values on the complement
of T ·N belong to (−1/3, 1/3), and its values on T belong to (2/3, 4/3). Note that
composition φ◦f with a Lipschitz function φ : R −→ R will also satisfy the same p-
summability condition of the commutator. In particular, we can compose f with a
function φ such that φ((−1/3, 1/3)) = {0} and φ((2/3, 4/3)) = {1}. Consequently,
we may assume that f ∈ Ap is supported in T · N and is equal to 1 on T .

Let w = x1x2 . . . ∈ Xω and consider the graph of germs Γw. Let P be the
natural quotient map from G to Γw given by g 7→ (g, w). Fix n ≥ 1, and define
fn(v) =

∑
g∈G,(g,w)=v f(g ·x1x2 . . . xn), where v is a vertex of Γw, i.e., a germ at w.
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Note that fn(g, w) 6= 0 only for germs of transformations of the form x1x2 . . . xnu 7→
y1y2 . . . ynh(u) for y1y2 . . . yn ∈ X∗ and h ∈ N . In particular, fn is finitely sup-
ported. Let g · x1x2 . . . xn ∈ T · N . Then the germ (g, w) is uniquely deter-
mined by the element g · x1x2 . . . xn ∈ B⊗n and the element g|x1x2...xn ∈ N .
Hence two such elements g1, g2 define the same germ (gi, w) but different elements
gi · x1x2 . . . xn ∈ T ·N only if gi|x1x2...xn ∈ N are different. It follows that the sum
in the definition of fn has at most |N | non-zero summands.

We have then for every edge (γ, s · γ) of the graph of germs

|fn(γ)− fn(s · γ)|p =

∣∣∣∣∣∣
∑

g∈G,(g,w)=γ

f(g · x1x2 . . . xn)− f(sg · x1x2 . . . xn)

∣∣∣∣∣∣
p

≤

|N |2(p−1)
∑

g∈G,(g,w)=γ

|f(g · x1x2 . . . xn)− f(sg · x1x2 . . . xn)|p.

Consequently,
∑
|∇fn|p is bounded from above by

|N |2(p−1)
∑

g∈G,s∈S
|f(g · x1x2 . . . xn)− f(sg · x1x2 . . . xn)|p.

But the latter approaches zero as n→∞, since ∇f is p-summable. �

Proposition 8.3. If there exists a p-contracting model of G, then Ap is dense.

Proof. Let Γ be a connected metric graph with a right proper co-compact isometric
G-action, and let I : Γ ⊗ B −→ Γ be a p-contracting G-equivariant map. It
induces continuous maps I∞n : XG −→ Γ ⊗B⊗n for every n. Let Ln be the set of
compositions of I∞n with Lipschitz compactly supported functions Γ⊗B⊗n −→ R.
Since the map I is Lipschitz, we have Ln+1 ⊃ Ln. Let L =

⋃
n≥0 Ln. The set L

separates the points of XG, since the space XG is the inverse limit of the graphs
Γ⊗B⊗n with respect to the maps Imn . It is enough therefore to show that Ln ⊂ Ap
for every n.

Let f : Γ ⊗ B⊗n −→ R be a compactly supported Lipschitz function. Pick
a sequence w0 = . . . x2x1 ∈ X−ω, and define a map f̃ : B∗ −→ R by f̃(v) =
f(I∞n (w0 ⊗ v)).

The map I∞n : XG −→ Γ⊗B⊗n is proper (as an equivariant map between proper

co-compact G-spaces). It follows that the support of f̃(w) intersected with XG is

compact. In particular, the set F of elements of g such that f̃(w · g) 6= 0 for some
xi ∈ X is finite.

A point v ∈ B⊗k belongs to the support of f̃ if and only if w0⊗ v ∈ XG belongs
to the support of f̃ . This implies that v = xk . . . x2x1 ·g for some xi ∈ X and g ∈ F .
Consequently, the support of f̃ is compact. The function f̃ |XG belongs to Ln, by

definition. The function f̃ is its compactly supported extension to XG ∪B∗.
Let us show that for every g ∈ G and x ∈ X the functions f̃(v) − f̃(g · v) and

f̃(v) − f̃(x ⊗ v) are p-summable. Let L be the Lipschitz constant for f and let λ
be the p-contraction coefficient for I. Then we have for every k such that g|v ∈ N
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for all v ∈ Xk, we have∑
v∈B⊗k

|f̃(v)− f̃(g · v)|p =
∑

v∈B⊗k
|f(I∞n (w0 ⊗ v))− f(I∞n (w0 · g ⊗ v))|p =

∑
v∈Xk,h∈G

|f(I∞n (w0 ⊗ v · h))− f(I∞n (w0 · g ⊗ v · h))|p =

∑
v∈Xk,h∈F∪NF

|f(I∞n (w0 ⊗ v · h))− f(I∞n (w0 · g ⊗ v · h))|p ≤

∑
v∈Xk,h∈F∪NF

Lp|I∞n (w0 ⊗ v · h)− I∞n (w0 · g ⊗ v · h)|p =

|F ∪NF |
∑
v∈Xk

Lp|I∞n (w0 ⊗ v)− I∞n (w0 · g ⊗ v)|p ≤ Cλk

for some constant C not depending on k, by Proposition 5.3. Similarly, if we denote
w1 = w0 ⊗ x for x ∈ X, then we have for all k ≥ 0:∑

v∈B⊗k
|f̃(v)− f̃(x⊗ v)|p =

∑
v∈B⊗k

|f(I∞n (w0 ⊗ v))− f(I∞n (w1 ⊗ v))|p =

∑
v∈Xk,h∈G

|f(I∞n (w0 ⊗ v · h))− f(I∞n (w1 ⊗ v · h))|p =

∑
v∈Xk,h∈F∪NF

|f(I∞n (w0 ⊗ v · h))− f(I∞n (w1 ⊗ v · h))|p ≤

∑
v∈Xk,h∈F∪NF

Lp|I∞n (w0 ⊗ v · h)− I∞n (w1 ⊗ v · h)|p =

|F ∪NF |
∑
v∈Xk

Lp|I∞n (w0 ⊗ v)− I∞n (w1 ⊗ v)|p ≤ Cλk

for some C not depending on k. It follows that f̃ belongs to Ap. �

8.2. p-contracting models for subgroups of Pn(X).

Theorem 8.4. Every contracting self-similar subgroup of Pd(X) is amenable.

The theorem follows directly from Proposition 8.3, Theorems 8.2 and 6.5, and
the following theorem.

Theorem 8.5. If G is a self-similar finitely generated contracting subgroup of
Pn(X), then it has a p-contracting model for every p > 1.

Proof. We prove it by induction on n. Suppose that it is true for all values smaller
than n. Let G ≤ Pn(X) be a self-similar contracting group. Let B be the associated
G-biset.

Suppose at first that G is generated by its nucleus N . We pass to the power of
the alphabet such that every non-trivial cycle of N is a loop.

Let N0 = N ∩ Pn−1(X), and let G0 < G be the group generated by N0. (Note
that the nucleus of G0 is in general smaller than N0, and is obtained from N0 by
removing vertices that are not reachable from cycles of N0.) Let B0 ⊂ B be the
corresponding G0-biset. Let X and X0 be the limit G-space and limit G0-space,
respectively.
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Let p > 1 be arbitrary. By the inductive assumption, after passing to an iteration
B⊗n0 , there exists a connected graph Γ0 with a proper right G0-action, and a map
I : Γ0 ⊗B0 −→ Γ0, such that

ess sup
t∈Γ0

∑
x∈X

∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p = λ < 1.

Let I∞0 : X0 −→ Γ0 be the corresponding projection map. For every letter x ∈ X
we have the corresponding point I∞(x−ω). (We denote x−ω = . . . xxx.) After

replacing Γ0 by Γ0 ⊗B⊗k0 , if necessary, we may assume that I∞(x−ω1 ) 6= I∞(x−ω2 )
when the points of X0 represented by x−ωi are different. We also assume that the
points I∞(x−ω) are vertices of Γ0 and that combinatorial distance between any two
of them is at least 2 (this can be achieved just by subdividing the edges of Γ0 in a
G0-equivariant way).

Consider now Γ0 ⊗G0
G, where G is seen as a left G0-set. The connected com-

ponents of Γ0 ⊗G0 G correspond to the right G-cosets of G0. Namely, two points
v1 ⊗G0 g1 and v2 ⊗G0 g2 belong to the same connected component of Γ0 ⊗G0 G if
and only if G0g1 = G0g2.

Add a new vertex vξ for every point ξ ∈ X that can be represented in the form
x−ω · g for x ∈ X, and connect it by an edge of length L (to be chosen later) to the
point I∞(x−ω) ⊗G0

g of Γ0 ⊗G0
G. Let Γ1 be the obtained graph. The group G

acts naturally on Γ1. Note that if vξ is connected to a vertex I∞(x−ω)⊗G0 g, then
ξ can be represented as x−ω · g. This implies that Γ1 has bounded degree, since the
sizes of the asymptotic equivalence classes in X−ω ×G are bounded.

Let g ∈ N \ N0. Then there exists a unique pair of letters x, y ∈ X such that
g · x = y · g. Then for every h ∈ G the sequences x−ω · h and y−ω · gh represent
the same point ξ of X . The points I∞0 (x−ω · h) and I∞0 (y−ω · gh) belong to the
connected components of Γ0⊗G0 G corresponding to the cosets G0h and G0gh, and
are both connected by the edges of Γ1 to the vertex vξ. Since the set G0∪ (N \N0)
generates G, it follows that Γ1 is connected.

Let us define a self-similarity J : Γ1 ⊗G B −→ Γ1. We set its restriction to
Γ0 ⊗G0

G to coincide with the previously constructed self-similarity (induced by
I ⊗G0 Id). Let y ∈ X. Consider a vertex vertex vξ of Γ1 not belonging to Γ0⊗G0 G
and a letter y ∈ X. Let us define J(· ⊗ y) on the union of the edges adjacent to
vξ. Each such an edge connects vξ with a point I∞0 (x−ω) ⊗G0

g, where x−ω · g
represents ξ. We have to define the action of J(·, y) on the edge connecting vξ with
I∞0 (x−ω)⊗G0

g.
We consider two cases:
Case I. Suppose that g(y) 6= x. Then ξ ⊗ y is represented by x−ωg(y) · g|x. Let

us show that x−ωg(y) · g|x can not be represented by z−ω · h for any z ∈ X and
h ∈ G. Suppose that it is. Then the asymptotic equivalence between x−ωg(y) · g|x
and z−ω · h is given by a loop passing through f ∈ N such that f · x = z · f , but
then we will have f · g(y)g|x = z · h, which contradicts the fact that f−1(z) = x.
Consequently, the point ξ ⊗ y ∈ X is not one of the points used to define vertices
of Γ1 not contained in Γ0 ⊗G0 G.

Consider the set of vertices of Γ0 ⊗G0 G adjacent to vξ. Let I∞(x−ωi )⊗G0 gi for
i = 1, 2 be two of them. Then we have ξ = x−ω1 · g1 = x−ω2 · g2 in X , but x−ωi ⊗G0

gi
are different in X0 ⊗G0

G. There exists h ∈ N \ N0 such that h · x1 = x2 · h and
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Figure 8. The map Dδ

hg1 = g2. Consider the corresponding sequences representing ξ ⊗ y in X0 ⊗G0
G:

(x−ω1 ⊗G0
g1)⊗ y = (x−ω1 g1(y))⊗G0

g1|y
and

(x−ω2 ⊗G0
hg1)⊗ y = (x−ω2 (hg1)(y))⊗G0

h|g1(y)g1|y.
Since h|g1(y) ∈ G0, these two points will belong to the same connected component
of Γ0 ⊗G0

G, and there is a uniform bound B on the distance between such points
(e.g., the diameter of I∞(X−ω ·N0) in Γ0). We can define then the image of vξ⊗y to
be any of these points, and map the corresponding edges linearly to the geodesics.
Then the length of the images of the edges adjacent to vξ will be bounded above
by B. (Note that B does not depend on L.)

Case II. Suppose that g(y) = x. Then we have ξ ⊗ y = x−ω · g|y, so we can
map the vertex vξ to the vertex vξ⊗y. Suppose that I∞(x−ω1 ⊗G0

g1) is a vertex
adjacent to vξ. Then x−ω1 · g1 and x−ω · g both represent ξ, so that there exists
h ∈ N such that h · x1 = x · h and hg1 = g. Then we have I(I∞(x−ω1 ⊗G0 g1) ⊗
y) = I∞(x−ω1 g1(y) ⊗G0

g1|y). We have g1(y) = h−1g(y) = h−1(x) = x1, so that
I(I∞(x−ω1 ⊗G0

g1 ⊗ y) is a vertex of Γ0 ⊗G0
G connected to vξ⊗y.

It follows that the edges adjacent to vξ can be mapped by J accordingly without
any change of their length.

We have constructed a G-equivariant map J : Γ1 ⊗ B −→ Γ1. We will now
modify it to a new equivariant map J ′ by post-composing it with the following map
Dδ : Γ1 −→ Γ1. The map Dδ will be identical on all vertices of Γ1 except for the
vertices of the form I∞(x−ω)⊗G0

g. We define Dδ(I
∞(x−ω)⊗G0

g) to be the point
on the edge connecting I∞(x−ω)⊗G0

g to vx−ω·g on distance δ from I∞(x−ω)⊗G0
g.

We re-scale linearly every edge adjacent to I∞(x−ω)⊗G0
g accordingly, see Figure 8.

It is easy to see that Dδ is G-equivariant. Denote J̃ = Dδ ◦ J .
If e is an edge of Γ0 ⊗G0

G of length l, then it will be mapped by Dδ either to
itself, or to an edge of length at most l+ δ. It follows that if l0 be the minimum of

the lengths of the edges of Γ0, then
∣∣∣dDδ(t)dt

∣∣∣ ≤ l0+δ
l0

for all t (where the derivative

exists).
Let e be an edge of Γ1. If e ∈ Γ0 ⊗G0 G, then for almost every t ∈ e we have∑

x∈X

∣∣∣∣∣dJ̃(t⊗ x)

dt

∣∣∣∣∣
p

≤
(
l0 + δ

l0

)p∑
x∈X

∣∣∣∣dI(t⊗ x)

dt

∣∣∣∣p ≤ ( l0 + δ

l0

)p
λ.
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Since
(
l0+δ
l0

)p
→ 1 as δ → 0, we can choose δ such that

(
l0+δ
l0

)p
λ < 1. Let us fix

this δ.
If e does not belong to Γ0 ⊗G0

G, then for almost every t ∈ e we have∑
x∈X

∣∣∣∣∣dJ̃(t⊗ x)

dt

∣∣∣∣∣
p

≤ (|X| − 1)

(
l0 + δ

l0

)p
Bp

Lp
+

(
L− δ
L

)p
=

C

Lp
+

(
1− δ

L

)p
,

where C is a constant not depending on L. The function f(t) = Ctp + (1− δt)p is

equal to 1 at t = 0. Its derivative df
dt (t) = pCt1−p − δp(1 − δt)p−1 is −pδ < 0 at

t = 0. It follows that there exists t > 0 such that f(t) < 1. Taking L = t−1, we

find L > 0 such that C
Lp +

(
1− δ

L

)p
< 1. We see that J̃ is p-contracting for the

given choices of δ and L.
Suppose now that G is not generated by its nucleus. Let G0 be the subgroup

generated by the nucleus N . Let A be the set of states of the automaton generating
G which do not belong to G0. After passing to a power of alphabet, we may
assume that for every g ∈ A and every x ∈ X we have g|x ∈ N . In particular, the
image of G under the wreath recursion belongs to GX

0 o SX. By the proven above
(and by the inductive hypothesis), there exists a metric graph Γ0 with a proper
and co-compact isometric right G0-action and a p-contracting G0-equivariant map
I : Γ0 ⊗B0 −→ Γ0. Let λ be the p-contraction coefficient for I.

Consider the graph Γ0 ⊗G0
G. Choose an arbitrary vertex w ∈ Γ0, and connect

for every h ∈ A and g ∈ G the vertex w ⊗G0
g to w ⊗G0

hg by an edge of length
M that will be chosen later. Let Γ1 be the obtained graph. It is connected, since
A ∪ G0 generates G. Let us define J : Γ1 ⊗B −→ Γ1. Since the set of vertices of
the graphs Γ1 and Γ0 ⊗G0 G are the same, we define J on the set of vertices to be
equal to I ⊗ Id. Consider a new edge e connecting w ⊗G0 g to w ⊗G0 hg for h ∈ A
and g ∈ G, and let x ∈ X. Then the image J(e⊗x) of the edge e has to connect the
points I(w ⊗ g(x)) · g|x and I(w ⊗ hg(x)) · h|g(x)g|x. Note that h|g(x) ∈ N , so that
the points I(w⊗g(x)) ·g|x and I(w⊗hg(x)) ·h|g(x)g|x belong to the same connected
component of Γ0 ⊗G0

G. We can map therefore the edge e by I(· ⊗ x) linearly to
the geodesic connecting them. This will define our map J : Γ1 ⊗B −→ Γ1.

The map J coincides with I on the connected components of Γ0 ⊗G0 G, which
are invariant under I(· ⊗ x). This proves that J is p-contracting on the edges of
Γ0⊗G0

G. The set {I(w⊗ y) · f) : y ∈ X, f ∈ N} is finite, hence there is a uniform
upper bound B on the length of the I(e ⊗ x) for the edges e ∈ Γ1 \ Γ0 ⊗G0

G.
Consequently, for any such an edge e we have∑

x∈X

∣∣∣∣dJ(t⊗ x)

dt

∣∣∣∣p ≤ |X| · BpLp .
By choosing sufficiently large L we can achieve p-contraction. �
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