MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, March 23

Simplices, reminder

A d-dimensional simplex is given by a set of vertices $v_{0}, v_{1}, \ldots, v_{d}$. An oriented simplex is an ordered set of vertices $\left(v_{0}, v_{1}, \ldots, v_{d}\right)$. Two orderings define the same oriented simplex if the permutation transforming one ordering into the other is even. Otherwise their orientation is opposite. For example, $\left(v_{0}, v_{1}\right)$ and $\left(v_{1}, v_{0}\right)$ are two different orientations of a 1-dim simplex (of a segment). Simplices $\left(v_{0}, v_{1}, v_{2}\right),\left(v_{1}, v_{2}, v_{0}\right),\left(v_{0}, v_{1}, v_{2}\right)$ have the same orientation; $\left(v_{0}, v_{2}, v_{1}\right),\left(v_{2}, v_{1}, v_{0}\right),\left(v_{1}, v_{0}, v_{2}\right)$ have the opposite orientation.

Simplicial complexes, reminder

A simplicial complex Δ is a given by a set of vertices V and the set of simplices on V (i.e., finite subsets of V) such that if $S=\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ is a simplex of Δ, then every subset of S is also a simplex of Δ (the subsets are called faces or subsimplices of S). The dimension of Δ is the maximal dimension of its simplices.
For example, a one-dimensional simplicial complex is a graph. (A 0 -dimensional simplicial complex is just a set of vertices.)

Chains and their boundaries, reminder

Let Δ be a simplicial complex, where we choose an orientation for each simplex (in an arbitrary way). Its group of d-dimensional chains is the free abelian group generated by the d-dimensional simplices of Δ. So, a chain is a formal linear combination $m_{1} S_{1}+m_{2} S_{2}+\cdots+m_{k} S_{k}$, where $m_{i} \in \mathbb{Z}$ and S_{i} are oriented d-simlices of Δ. We denote the group of d-dimensional chains by $C_{d}(\Delta)$. If S is an oriented simplex, then we interpret $-S$ as the simplex with the opposite orientation.
If $S=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{d}\right)$ is an oriented d-simplex, then its boundary is the chain

$$
\begin{aligned}
& \partial_{d} S=\left(v_{1}, v_{2}, \ldots, v_{d}\right)-\left(v_{0}, v_{2}, \ldots, v_{d}\right)+\cdots+ \\
& (-1)^{k}\left(v_{0}, v_{1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{d}\right)+ \\
& \\
& \cdots+(-1)^{d}\left(v_{0}, v_{1}, \ldots, v_{d-1}\right) \in C_{d-1}(S) .
\end{aligned}
$$

It agrees with the usual notion of the oriented boundary of a simplex.

Homology

We get a sequence of abelian groups and homomorphisms

$$
C_{0} \stackrel{\partial_{1}}{\leftrightarrows} C_{1} \stackrel{\partial_{2}}{\leftrightarrows} C_{2} \stackrel{\partial_{3}}{\leftrightarrows} \cdots
$$

We have checked in the previous lecture that $\partial_{n} \circ \partial_{n+1}$ maps everything to zero.
In other words, $\operatorname{im} \partial_{n+1} \leq \operatorname{ker} \partial_{n}$. The elements of $\operatorname{im} \partial_{n+1}=: B_{n}(\Delta)$ are called (n-dimensional) boundaries. The elements of ker $\partial_{n}=: Z_{n}(\Delta)$ are called (n-dimensional) cycles. Every boundary is a cycle, so that $B_{n}(\Delta) \leq Z_{n}(\Delta)$.
We assume that $C_{n}(\Delta)=0$ when n is greater than the dimension of Δ. In particular, $\partial_{n}: C_{n}(\Delta) \longrightarrow C_{n-1}(\Delta)$ is then the zero homomorphism, so we have $B_{d}(\Delta)=0$ if d is equal to or larger than the dimension of Δ. Similarly, we assume that $C_{-1}(\Delta)=0$, so that $\partial_{0}: C_{0}(\Delta) \longrightarrow C_{-1}(\Delta)$ is also constant zero. Therefore, all elements of $C_{0}(\Delta)$ are considered to be cycles.

Homology

The nth homology group is the factor group

$$
H_{n}(\Delta)=Z_{n}(\Delta) / B_{n}(\Delta)=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1}
$$

It measures how much is there cycles that are not boundaries. Informally, it measure number of n-dimensional "holes."
For example, $H_{0}(\Delta)$ is the factor of $C_{0}(\Delta)$ by the subgroup generated by $A-B$ for all edges $A B$ of Δ. In other words, $H_{0}(\Delta)$ is obtained from the free abelian group generated by the vertices by identifying any two vertices connected by an edge. We conclude that $H_{0}(\Delta)$ is the free abelian group generated by the connected components of Δ. In particular, Δ is connected if and only if $H_{0}(\Delta)=\mathbb{Z}$.

Example: A ring of edges

Suppose that Δ is the graph consisting of one cycle of edges $e_{1}, e_{2}, \ldots, e_{n}$ of length n (i.e., an n-gon). Then $C_{1}(\Delta)$ is \mathbb{Z}^{n} generated by n edges e_{i}, $C_{0}(\Delta)$ is \mathbb{Z}^{n} generated by the vertices of the n-gon. We know that $H_{0}(\Delta)=\mathbb{Z}$, since Δ is connected. We have $C_{2}(\Delta)=0$, since Δ is one-dimensional. Consequently, $B_{1}(\Delta)=0$.

Example: A ring of edges

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of Δ, so that $e_{i}=v_{i} v_{i+1}$ and $e_{n}=v_{n} v_{1}$.
A chain $m_{1} e_{1}+m_{2} e_{2}+\cdots+m_{n} e_{n}$ is a cycle if its boundary $m_{1}\left(v_{1}-v_{2}\right)+m_{2}\left(v_{2}-v_{3}\right)+\cdots+m_{n}\left(v_{n}-v_{1}\right)$ is equal to 0 , Rearranging, we get that the boundary is $\left(m_{1}-m_{n}\right) v_{1}+\left(m_{2}-m_{1}\right) v_{2}+\cdots+\left(m_{n}-m_{n-1}\right) v_{n}$. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of $C_{1}(\Delta)$, this happens if and only if $m_{1}-m_{n}=m_{2}-m_{1}=\ldots=m_{n}-m_{n-1}=0$, i.e., if and only if $m_{1}=m_{2}=\ldots=m_{n}$. We see that $Z_{1}(\Delta)$ is the set of chains of the form $m\left(e_{1}+e_{2}+\cdots+e_{n}\right)$, i.e., is the cyclic subgroup generated by $e_{1}+e_{2}+\cdots+e_{n}$. Consequently, $H_{1}(\Delta)=Z_{1}(\Delta) / 0 \cong \mathbb{Z}$. This corresponds to the intuition that Δ has one "hole."

Figure eight

Consider now the graph Δ obtained by taking boundaries of two triangles $A B C$ and $A X Y$ with one common vertex A. It has two "holes." Let us compute $H_{1}(\Delta)$.
A 1-dimensional chain is any expression of the form $m_{1} A B+m_{2} B C+m_{3} C A+k_{1} A X+k_{2} X Y+k_{3} Y A$. Its boundary is $m_{1}(A-B)+m_{2}(B-C)+m_{3}(C-A)+k_{1}(A-X)+k_{2}(X-Y)+k_{3}(Y-A)=$ $\left(m_{1}-m_{3}+k_{1}-k_{3}\right) A+\left(m_{2}-m_{1}\right) B+\left(m_{3}-m_{2}\right) C+\left(k_{2}-k_{1}\right) X+\left(k_{3}-k_{2}\right) Y$. It is equal to 0 if and only if

$$
\left\{\begin{aligned}
m_{1}-m_{3}+k_{1}-k_{3} & =0 \\
m_{2}-m_{1} & =0 \\
m_{3}-m_{2} & =0 \\
k_{2}-k_{1} & =0 \\
k_{3}-k_{2} & =0
\end{aligned}\right.
$$

Figure eight

$$
\left\{\begin{aligned}
m_{1}-m_{3}+k_{1}-k_{3} & =0 \\
m_{2}-m_{1} & =0 \\
m_{3}-m_{2} & =0 \\
k_{2}-k_{1} & =0 \\
k_{3}-k_{2} & =0
\end{aligned}\right.
$$

We see that the chain is a cycle if and only if $m_{1}=m_{2}=m_{3}$ and $k_{1}=k_{2}=k_{3}$. It follows that the group of cycles is the set of chains of the form $m A B+m B C+m C A+k A X+k X Y+k Y A$, i.e., it is the free abelian group generated by $A B+B C+C A$ and $A X+X Y+Y A$. Since the group of boundaries is 0 , it follows that $H_{2}(\Delta)=\mathbb{Z}^{2}$.

Sphere

Let Δ be the boundary of a tetrahedron $A B C D$. Then $C_{2}(\Delta)$ is \mathbb{Z}^{4} generated by $B C D, C A D, A B D, A C B, C_{1}(\Delta)$ is \mathbb{Z}^{6} generated by $A B, A C, A D, B C, B D, C D$, and $C_{0}(\Delta)$ is \mathbb{Z}^{4} generated by A, B, C, D. We have $H_{0}(\Delta)=\mathbb{Z}$, since Δ is connected. Let us find $H_{1}(\Delta)$. The group of boundaries $B_{1}(\Delta)$ is generated by the boundaries of the faces of the tetrahedron, i.e., by
$C D+D B+B C, A D+D C+C A, B D+D A+A B, C B+B A+A C$.
Consequently, it is the group of all chains of the form

$$
\begin{aligned}
& m_{1}(C D+D B+B C)+m_{2}(A D+D C+C A)+ \\
& m_{3}(B D+D A+A B)+m_{4}(C B+B A+A C)= \\
& \left(m_{3}-m_{4}\right) A B+\left(m_{4}-m_{2}\right) A C+\left(m_{2}-m_{3}\right) A D+ \\
& \quad\left(m_{1}-m_{4}\right) B C+\left(m_{3}-m_{1}\right) B D+\left(m_{1}-m_{2}\right) C D .
\end{aligned}
$$

Sphere

$$
\begin{aligned}
& m_{1}(C D+D B+B C)+m_{2}(A D+D C+C A)+ \\
& m_{3}(B D+D A+A B)+m_{4}(C B+B A+A C)= \\
& \left(m_{3}-m_{4}\right) A B+\left(m_{4}-m_{2}\right) A C+\left(m_{2}-m_{3}\right) A D+ \\
& \quad\left(m_{1}-m_{4}\right) B C+\left(m_{3}-m_{1}\right) B D+\left(m_{1}-m_{2}\right) C D
\end{aligned}
$$

Denote $k_{1}=m_{3}-m_{4}, k_{2}=m_{4}-m_{2}, k_{4}=m_{1}-m_{4}$. Then $m_{3}-m_{2}=k_{1}+k_{2}, m_{3}-m_{1}=k_{1}+k_{4}$, and $m_{1}-m_{2}=k_{2}+k_{4}$. We get that the group of boundaries is the set of chains of the form

$$
k_{1} A B+k_{2} A C+\left(-k_{1}-k_{2}\right) A D+k_{4} B C+{ }_{\left(k_{1}+k_{4}\right) B D+\left(k_{2}+k_{4}\right) C D}
$$

Sphere

A chain $k_{1} A B+k_{2} A C+k_{3} A D+k_{4} B C+k_{5} B D+k_{6} C D$ is a cycle if and only if its boundary is zero. The boundary is
$k_{1} A-k_{1} B+k_{2} A-k_{2} C+k_{3} A-k_{3} D+k_{4} B-k_{4} C+k_{5} B-k_{5} D+k_{6} C-k_{6} D=$ $\left(k_{1}+k_{2}+k_{3}\right) A+\left(-k_{1}+k_{4}+k_{5}\right) B+\left(-k_{2}-k_{4}+k_{6}\right) C+\left(-k_{2}-k_{4}+k_{6}\right) D$, so the condition to be a cycle is

$$
\left\{\begin{aligned}
k_{1}+k_{2}+k_{3} & =0 \\
-k_{1}+k_{4}+k_{5} & =0 \\
-k_{2}-k_{4}+k_{6} & =0 \\
-k_{2}-k_{4}+k_{6} & =0
\end{aligned}\right.
$$

Sphere

$$
\left\{\begin{array}{r}
k_{1}+k_{2}+k_{3}=0 \\
-k_{1}+k_{4}+k_{5}=0 \\
-k_{2}-k_{4}+k_{6}=0 \\
-k_{2}-k_{4}+k_{6}=0
\end{array}\right.
$$

This is equivalent to the condition $k_{3}=-k_{1}-k_{2}, k_{5}=k_{1}-k_{2}$, $k_{6}=k_{2}+k_{4}$, which is the same condition as for belonging to $B_{1}(\Delta)$. We see that $B_{1}(\Delta)=Z_{1}(\Delta)$, hence $H_{1}(\Delta)=0$. This corresponds to the fact that there are no one-dimensional holes (holes bounded by a curve) on the boundary of a simplex.

Sphere

Let us compute $H_{2}(\Delta)$. There are no boundaries, since $C_{3}(\Delta)=0$. In other words, $B_{2}(\Delta)=0$. A chain $m_{1} B C D+m_{2} C A D+m_{3} A B D+m_{4} A C B$ is a cycle if and only if its boundary is zero, which is

$$
\begin{aligned}
& m_{1}(C D+D B+B C)+m_{2}(A D+D C+C A)+ \\
& m_{3}(B D+D A+A B)+m_{4}(C B+B A+A C)= \\
& \left(m_{3}-m_{4}\right) A B+\left(m_{4}-m_{2}\right) A C+\left(m_{2}-m_{3}\right) A D+ \\
& \quad\left(m_{1}-m_{4}\right) B C+\left(m_{3}-m_{1}\right) B D+\left(m_{1}-m_{2}\right) C D
\end{aligned}
$$

It is zero if and only if $m_{1}=m_{2}=m_{3}=m_{4}$. We see that the group of cycles is cyclic, generated by $B C D+C A D+A B D+A C B$. It follows that $H_{2}(\Delta)=\mathbb{Z}$, i.e., we have one two-dimensional "hole."

In general, if Δ_{n} is the boundary of an $(n+1)$-dimensional simplex, then $H_{0}\left(\Delta_{n}\right)=\mathbb{Z}, H_{n}\left(\Delta_{n}\right)=\mathbb{Z}$, and all the remaining homology groups are 0 .

The homology groups $H_{n}(\Delta)$ depend on the topological type of Δ. For example, if Δ is a triangulation of a surface S, then $H_{n}(\Delta)$ depends only on S, and can be denoted $H_{n}(S)$. For example, s if Δ is the simplicial complex of the surface of an octahedron, or icosahedron, then $H_{n}(\Delta)$ is the same as $H_{n}(\Delta)$ for Δ the surface of the tetrahedron, since all of them are triangulations of the sphere.

