MATH 416, Modern Algebra I J

Volodymyr Nekrashevych

2020, April 23

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra |1 2020, April 23 1/17



Galois Theory

Solving equations of degree n < 4

We all know how to solve quadratic equations: the roots of x2 + px + ¢

— A/ p?2—
are w. One of the ways to deduce it is by looking at

(x — x1)(x — x2) = x* — (x1 + x2)X + x1x2

and noting that (x; — x2)? is a symmetric polynomial, so can be expressed
as a function of s; = x; + x2 and s, = x3x2, namely

(x1 — X2)2 = x12 — 2x1X0 + x22 =(x1 + X2)2 —4xix0 = p? — 4q.

Then x1 — xo = £4/p? — 4q, and then x1 o = w
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Galois Theory

Cubic equations

Let us try to do something similar for cubic equations. First of all, we can
simplify x3 + ax? 4 bx + ¢ by substitution x = y — 2

(v —a/3)3 +a(y — a/3)? + b(y — a/3) + ¢ has coefficient at y? equal to
—35 +a =0, so we can consider polynomials of the form x3+px+q. If

X1, X2, X3 are its roots, then we have

x1+x+x3 = 0
X1X2 + X1X3 + Xox3 = p
X1XoX3 = —(q
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Galois Theory

x1+x+x3 = 0
X1X2 + X1X3 + Xox3 = p
X1X2X3 = —¢q

It follows that 0 = (x1 +x2 + x3)3 = x3 +x3 + X33 + 3x1x0(x1 + x2) +
3x1x3(x1 + x3) + 3x2x3(x2 + x3) + 6x1X2X3 = xf’ + Xg’ + xg — 3Xx1X2X3, SO
that

345 +x3 = —3q.
We have
(x1x2 + x1x3 + x2x3)° = 353 + 353 + x3x3 + 3 Zx,-szxf + 6x2xEx3 =
X$x3 + xfxf + XSX:‘} — 3xpxox3(x1xa(x1 + x2) + x1x3(x1 + x3) + xox3(x2 +
x3) + 6X12X22X32 = Xfxg’ + X13X§’ + x23x§ — 3X12X22X32, so

2
x3x3 +X13X§ —|—x23x33 = p +3¢°
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Galois Theory

Cubic equations

2
X3+ =3, X6 + X0 + 53 = p’ +3q7.

Let us look again at the discriminant

(x1 — x2)?(x2 — x3)%(x1 — X3) = ( — 4x10)(x? 4x2X3)(X2 —4x1x3) =
—63x2x3x3 — 4(x2x3 +x3 x2 + xj X3) + ]_6X1X2X3(X1 +535 +x3) =

—639° — 4(p® + 3¢%) + 48¢% = —27q° — 4p°.

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra Il 2020, April 23 5/17



Galois Theory

Cubic equations

Therefore,

VD = (x1 — x0)(x1 — x3)(x2 — x3) = \/—27¢2 — 4p3.

This expression is invariant under Az & Zs3. Recall that

Q(p, q) C Q(x1, x2,x3) has S3 as the Galois group. As corresponds to an
intermediate field Q(p, g) C F C Q(x1, x2, x3). We have

[F: Q(p,q)] = [S3: As] = 2, therefore F = Q(p, q)(v/D). We also have
[Q(x1,x2,x3) : F] = |A3] = 3. If u € Q(x1, x2, x3) does not belong to F,

then its irreducible polynomial over F has degree 3, so that

Q(x1, x2,x3) = F(u). We can simplify formulas by taking more than one
element to generate Q(x1, x2, x3)
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Galois Theory

Cubic equations

Let ¢ = —1 + i3, Then u= (x1 + (0 + ¢2x3)/3 and

v = (x1 + (?x2 + (x3)/3 are multiplied by ¢ and ¢? if we permute

x1 — x2 — x3. Consequently, u? and v3 are invariant under As, hence
they belong to F = Q(p, q)(v/D). But u,v ¢ F. Note that the
permutation x> <+ x3 interchanges u and v. The system

X1 + CXQ + C2X3 = 3u
X1 + <2X2 4+ (x3 = 3v
X1 + X2 + x3 = 0

has unique solution:
x1=u+v, xo = C2u+ (v, x3=Cu+ v

(use 1+ ¢ +¢? =0).
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Galois Theory

Cubic equations

In fact, a direct check shows that u3 and v3 satisfy the equation

R RO R e SCRO
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Galois Theory

Cubic equation: overview

The goal was to understand the splitting field Q(x1, x2, x3) of the
polynomial x3 + px + g over Q(p, q). The Galois group is the symmetric
group S3 permuting the roots xi, xo, x3. We have a chain of subgroups
{1} < A3 < S3. Therefore, we will have a chain of subfields

Q(p,q) C F € Q(x1,x2,x3). Since the indices are [S3 : As3] = 2,

[Az : {1}] = 3, the degrees are [F : Q(p,q)] =2 and

[Q(x1, %2, x3) : F] = 3. We check that v® = (x1 + (x2 + ¢2x3)3 s fixed
under As, but u is not. It follows that u3 € F but v is not in F, so

Q(x1, x2,x3) = F(u). We also check that D = (x1 — x2)(x2 — x3)(x3 — x1)
is fixed by Az and not by S3, hence D € F but not in Q(p, g). We also see
that D? is fixed by S3, so D? € Q(p, q). It follows that D is a square root
of a function in p and q. u® € F, so u® can be expressed using D and p, g.
Consequently, u is a cube root of an expression involving p, g, D. Since
x1,x2,x3 € F(u), all roots can be expressed using p, q, D, u.
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Galois Theory

We see that the main idea was to find a tower of fields

Q(p,q) C F C Q(x1, x2,x3) such that each extension F; C F, in the tower
can be written as F, = Fi(«) for some « such that a” € F; for some n,
i.e., « is a root of x" — a for some a € F;. Such extensions are called
radical. An equation can be solved in radicals if its splitting field can be
constructed using a tower of consecutive radical extensions.
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Galois Theory

Degree 4 equations

A degree 4 equation can be also reduced to x* + px> + gx +r =0 by a
change of variable x — y — a/4. We can look at x* + px?> + gx + r as at a
polynomial over Q(p, g, r). Let x1,x2, x3, xa be its roots, so that the
splitting field is Q(x1, x2, X3, x4). The Galois group of the polynomial is S;.
We have a composition series

{1} <Zo < Zo®7Zr < Ag < 54

with factors Zy, Z», 73, Z>. This will correspond to a tower of field
extensions with degrees 2, 3,2, 2.
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Degree 4 equations

The Klein's four-group V = Z, @ Zy plays an important role here. Recall
that it consists of the permutations

(x1, x2)(x3, Xa), (x1, x3) (%2, Xa), (x1, X4) (X3, X2)-

Let F be the corresponding fixed field. It is easy to see that the expressions
71 = %(xlxz + x3x4), 2o = %(X1X3 + xpx4) and z3 = %(X1X4 + xpx3) are
fixed by V, i.e., belong to F. The symmetric group S; permutes z1, z, z3,
and elements of V are the only elements fixing each z;. (BTW, this
explicitly gives an epimorphism S; — S3 with kernel V.)
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Galois Theory

Degree 4 equations

Since S; permutes zi, z», z3, the elements

21+ 20+ 23,2120 + 2123 + 2023, Z1 2023 are fixed by Ss, hence belong to
Q(p, g, r). It follows that z;, zp, z3 are roots of a cubic polynomial with
coefficients in Q(p, g, r). In fact, they are roots of the cubic resolvent

2
23—[2)22—rz—|—(p2r—cé):0.
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Galois Theory

Degree 4 equations

We know how to solve it, so we will get expressions for z1, z», z3. We have
271 = x1x2 + x3X3 and r = x1x» - x3x3. It follows that xyx» and x3x; are
roots of the polynomial x?> — 2z;x + r. We also have,

2(z + z3) = x1x3 + Xxoxa + x1X8 + x0x3 = (x1 + x2)(x3 + xa) and

(x1 + x2) + (x3 + xa) = 0. Consequently, (x; + x2) and (x3 + xs) are roots
of x2 + 2(z + z3). Solving these quadratic equations, we will find

X1X2, X1 + X2, X3Xa, X3 + Xa. Then, solving the quadratic equations

x? — (x1 +x2)x + x1x2 = 0 and x2 — (x3 + x4)x + x3x4 = 0 we will find
X1, X2, X3, X4.
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Galois Theory

General discussion

An extension F C E is an extension of F by radicals if there is a sequences
of extensions

F=FCFHCFC..CF,=E
such that for each F; C F;1 there exist «; and n; such that Fiy1 = Fi(o;)
and o" € F;.
We say that a polynomial f(x) € F[x] is solvable by radicals if its splitting
field is contained in a radical extension of F. Solving a general equation of
degree n in radicals corresponds to solvability of a general polynomial
X"+ ap_1x" P+ aix +ag € Q(ar, a2, . .., a,-1)[x] in radicals. We
have seen that general polynomials are solvable in radicals for n =1,2,3 4.
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Galois Theory

Some particular (non-general) equations of higher degree may be solvable
in radicals. For example, x” — 1 or x" — a are solvable for every n and a.
Recall that a group G is called solvable if there exists a series

{1} =G <G <G<---<1G, =G

such that all factor groups Gjy1/G;j are abelian.
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Galois Theory

Theorem 1

A polynomial f(x) € F[x] is solvable in radicals (if and) only if its Galois
group is solvable.

As a corollary, we get

Theorem 2

The general polynomial equation of degree n is solvable in radicals if and
only if n > 4.

Namely, for n > 5 the subgroup A, < S, is simple. (It is easier to show
that the subgroup of A, generated by the commutators g~ 1h~1gh is the
whole group Ap, so that any homomorphism to an abelian group from A,
has A, as the kernel, so there are not subgroups H < A, such that A,/H
is abelian.)
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