MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 23

Solving equations of degree $n \leq 4$

We all know how to solve quadratic equations: the roots of $x^{2}+p x+q$ are $\frac{-p \pm \sqrt{p^{2}-4 q}}{2}$. One of the ways to deduce it is by looking at

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)=x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}
$$

and noting that $\left(x_{1}-x_{2}\right)^{2}$ is a symmetric polynomial, so can be expressed as a function of $s_{1}=x_{1}+x_{2}$ and $s_{2}=x_{1} x_{2}$, namely

$$
\left(x_{1}-x_{2}\right)^{2}=x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}=p^{2}-4 q .
$$

Then $x_{1}-x_{2}= \pm \sqrt{p^{2}-4 q}$, and then $x_{1,2}=\frac{\left(x_{1}+x_{2}\right) \pm\left(x_{1}-x_{2}\right)}{2}$.

Cubic equations

Let us try to do something similar for cubic equations. First of all, we can simplify $x^{3}+a x^{2}+b x+c$ by substitution $x=y-\frac{a}{3}$: $(y-a / 3)^{3}+a(y-a / 3)^{2}+b(y-a / 3)+c$ has coefficient at y^{2} equal to $-3 \frac{a}{3}+a=0$, so we can consider polynomials of the form $x^{3}+p x+q$. If x_{1}, x_{2}, x_{3} are its roots, then we have

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} & =p \\
x_{1} x_{2} x_{3} & =-q
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} & =p \\
x_{1} x_{2} x_{3} & =-q
\end{aligned}\right.
$$

It follows that $0=\left(x_{1}+x_{2}+x_{3}\right)^{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1} x_{2}\left(x_{1}+x_{2}\right)+$ $3 x_{1} x_{3}\left(x_{1}+x_{3}\right)+3 x_{2} x_{3}\left(x_{2}+x_{3}\right)+6 x_{1} x_{2} x_{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3 x_{1} x_{2} x_{3}$, so that

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=-3 q
$$

We have $\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)^{3}=x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}+3 \sum x_{i} x_{j}^{2} x_{k}^{3}+6 x_{1}^{2} x_{2}^{2} x_{3}^{2}=$ $x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}-3 x_{1} x_{2} x_{3}\left(x_{1} x_{2}\left(x_{1}+x_{2}\right)+x_{1} x_{3}\left(x_{1}+x_{3}\right)+x_{2} x_{3}\left(x_{2}+\right.\right.$ $\left.x_{3}\right)+6 x_{1}^{2} x_{2}^{2} x_{3}^{2}=x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}$, so

$$
x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}=p^{3}+3 q^{2} .
$$

Cubic equations

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=-3 q, \quad x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3}=p^{3}+3 q^{2}
$$

Let us look again at the discriminant $\left(x_{1}-x_{2}\right)^{2}\left(x_{2}-x_{3}\right)^{2}\left(x_{1}-x_{3}\right)^{2}=\left(x_{3}^{2}-4 x_{1} x_{2}\right)\left(x_{1}^{2}-4 x_{2} x_{3}\right)\left(x_{2}^{2}-4 x_{1} x_{3}\right)=$ $-63 x_{1}^{2} x_{2}^{2} x_{3}^{2}-4\left(x_{2}^{3} x_{3}^{3}+x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}\right)+16 x_{1} x_{2} x_{3}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)=$ $-63 q^{2}-4\left(p^{3}+3 q^{2}\right)+48 q^{2}=-27 q^{2}-4 p^{3}$.

Cubic equations

Therefore,

$$
\sqrt{D}=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)=\sqrt{-27 q^{2}-4 p^{3}} .
$$

This expression is invariant under $A_{3} \cong \mathbb{Z}_{3}$. Recall that $\mathbb{Q}(p, q) \subset \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ has S_{3} as the Galois group. A_{3} corresponds to an intermediate field $\mathbb{Q}(p, q) \subset F \subset \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$. We have $[F: \mathbb{Q}(p, q)]=\left[S_{3}: A_{3}\right]=2$, therefore $F=\mathbb{Q}(p, q)(\sqrt{D})$. We also have $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): F\right]=\left|A_{3}\right|=3$. If $u \in \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ does not belong to F, then its irreducible polynomial over F has degree 3 , so that $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)=F(u)$. We can simplify formulas by taking more than one element to generate $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$

Cubic equations

Let $\zeta=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then $u=\left(x_{1}+\zeta x_{2}+\zeta^{2} x_{3}\right) / 3$ and $v=\left(x_{1}+\zeta^{2} x_{2}+\zeta x_{3}\right) / 3$ are multiplied by ζ and ζ^{2} if we permute $x_{1} \mapsto x_{2} \mapsto x_{3}$. Consequently, u^{3} and v^{3} are invariant under A_{3}, hence they belong to $F=\mathbb{Q}(p, q)(\sqrt{D})$. But $u, v \notin F$. Note that the permutation $x_{2} \leftrightarrow x_{3}$ interchanges u and v. The system

$$
\left\{\begin{aligned}
x_{1}+\zeta x_{2}+\zeta^{2} x_{3} & =3 u \\
x_{1}+\zeta^{2} x_{2}+\zeta x_{3} & =3 v \\
x_{1}+x_{2}+x_{3} & =0
\end{aligned}\right.
$$

has unique solution:

$$
x_{1}=u+v, \quad x_{2}=\zeta^{2} u+\zeta v, \quad x_{3}=\zeta u+\zeta^{2} v
$$

(use $1+\zeta+\zeta^{2}=0$).

Cubic equations

In fact, a direct check shows that u^{3} and v^{3} satisfy the equation

$$
y^{2}+q y-\left(\frac{p}{3}\right)^{3}=0
$$

hence they are equal to $-\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}$, which gives the formulas

$$
\begin{aligned}
& x_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} \\
& x_{2}=\zeta^{2} \sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\zeta \sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} \\
& x_{3}=\zeta \sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\zeta^{2} \sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}
\end{aligned}
$$

Cubic equation: overview

The goal was to understand the splitting field $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ of the polynomial $x^{3}+p x+q$ over $\mathbb{Q}(p, q)$. The Galois group is the symmetric group S_{3} permuting the roots x_{1}, x_{2}, x_{3}. We have a chain of subgroups $\{1\}<A_{3}<S_{3}$. Therefore, we will have a chain of subfields $\mathbb{Q}(p, q) \subset F \subset \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$. Since the indices are $\left[S_{3}: A_{3}\right]=2$, $\left[A_{3}:\{1\}\right]=3$, the degrees are $[F: \mathbb{Q}(p, q)]=2$ and $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): F\right]=3$. We check that $u^{3}=\left(x_{1}+\zeta x_{2}+\zeta^{2} x_{3}\right)^{3}$ is fixed under A_{3}, but u is not. It follows that $u^{3} \in F$ but u is not in F, so $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)=F(u)$. We also check that $D=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)$ is fixed by A_{3} and not by S_{3}, hence $D \in F$ but not in $\mathbb{Q}(p, q)$. We also see that D^{2} is fixed by S_{3}, so $D^{2} \in \mathbb{Q}(p, q)$. It follows that D is a square root of a function in p and $q . u^{3} \in F$, so u^{3} can be expressed using D and p, q. Consequently, u is a cube root of an expression involving p, q, D. Since $x_{1}, x_{2}, x_{3} \in F(u)$, all roots can be expressed using p, q, D, u.

We see that the main idea was to find a tower of fields $\mathbb{Q}(p, q) \subset F \subset \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ such that each extension $F_{1} \subset F_{2}$ in the tower can be written as $F_{2}=F_{1}(\alpha)$ for some α such that $\alpha^{n} \in F_{1}$ for some n, i.e., α is a root of $x^{n}-a$ for some $a \in F_{1}$. Such extensions are called radical. An equation can be solved in radicals if its splitting field can be constructed using a tower of consecutive radical extensions.

Degree 4 equations

A degree 4 equation can be also reduced to $x^{4}+p x^{2}+q x+r=0$ by a change of variable $x \mapsto y-a / 4$. We can look at $x^{4}+p x^{2}+q x+r$ as at a polynomial over $\mathbb{Q}(p, q, r)$. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be its roots, so that the splitting field is $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. The Galois group of the polynomial is S_{4}. We have a composition series

$$
\{1\} \leq \mathbb{Z}_{2} \leq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \leq A_{4} \leq S_{4}
$$

with factors $\mathbb{Z}_{2}, \mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{2}$. This will correspond to a tower of field extensions with degrees $2,3,2,2$.

Degree 4 equations

The Klein's four-group $V \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ plays an important role here. Recall that it consists of the permutations $\left(x_{1}, x_{2}\right)\left(x_{3}, x_{4}\right),\left(x_{1}, x_{3}\right)\left(x_{2}, x_{4}\right),\left(x_{1}, x_{4}\right)\left(x_{3}, x_{2}\right)$. Let F be the corresponding fixed field. It is easy to see that the expressions $z_{1}=\frac{1}{2}\left(x_{1} x_{2}+x_{3} x_{4}\right), z_{2}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)$ and $z_{3}=\frac{1}{2}\left(x_{1} x_{4}+x_{2} x_{3}\right)$ are fixed by V, i.e., belong to F. The symmetric group S_{4} permutes z_{1}, z_{2}, z_{3}, and elements of V are the only elements fixing each z_{i}. (BTW, this explicitly gives an epimorphism $S_{4} \longrightarrow S_{3}$ with kernel V.)

Degree 4 equations

Since S_{4} permutes z_{1}, z_{2}, z_{3}, the elements $z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}, z_{1} z_{2} z_{3}$ are fixed by S_{4}, hence belong to $\mathbb{Q}(p, q, r)$. It follows that z_{1}, z_{2}, z_{3} are roots of a cubic polynomial with coefficients in $\mathbb{Q}(p, q, r)$. In fact, they are roots of the cubic resolvent

$$
z^{3}-\frac{p}{2} z^{2}-r z+\left(\frac{p r}{2}-\frac{q^{2}}{8}\right)=0
$$

Degree 4 equations

We know how to solve it, so we will get expressions for z_{1}, z_{2}, z_{3}. We have $2 z_{1}=x_{1} x_{2}+x_{3} x_{4}$ and $r=x_{1} x_{2} \cdot x_{3} x_{4}$. It follows that $x_{1} x_{2}$ and $x_{3} x_{4}$ are roots of the polynomial $x^{2}-2 z_{1} x+r$. We also have, $2\left(z_{2}+z_{3}\right)=x_{1} x_{3}+x_{2} x_{4}+x_{1} x_{4}+x_{2} x_{3}=\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)$ and $\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)=0$. Consequently, $\left(x_{1}+x_{2}\right)$ and $\left(x_{3}+x_{4}\right)$ are roots of $x^{2}+2\left(z_{2}+z_{3}\right)$. Solving these quadratic equations, we will find $x_{1} x_{2}, x_{1}+x_{2}, x_{3} x_{4}, x_{3}+x_{4}$. Then, solving the quadratic equations $x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}=0$ and $x^{2}-\left(x_{3}+x_{4}\right) x+x_{3} x_{4}=0$ we will find $x_{1}, x_{2}, x_{3}, x_{4}$.

General discussion

An extension $F \subset E$ is an extension of F by radicals if there is a sequences of extensions

$$
F=F_{0} \subset F_{1} \subset F_{2} \subset \ldots \subset F_{m}=E
$$

such that for each $F_{i} \subset F_{i+1}$ there exist α_{i} and n_{i} such that $F_{i+1}=F_{i}\left(\alpha_{i}\right)$ and $\alpha_{i}^{n_{i}} \in F_{i}$.
We say that a polynomial $f(x) \in F[x]$ is solvable by radicals if its splitting field is contained in a radical extension of F. Solving a general equation of degree n in radicals corresponds to solvability of a general polynomial $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)[x]$ in radicals. We have seen that general polynomials are solvable in radicals for $n=1,2,3,4$.

Some particular (non-general) equations of higher degree may be solvable in radicals. For example, $x^{n}-1$ or $x^{n}-a$ are solvable for every n and a. Recall that a group G is called solvable if there exists a series

$$
\{1\}=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \cdots \triangleleft G_{n}=G
$$

such that all factor groups G_{i+1} / G_{i} are abelian.

Theorem 1
A polynomial $f(x) \in F[x]$ is solvable in radicals (if and) only if its Galois group is solvable.

As a corollary, we get
Theorem 2
The general polynomial equation of degree n is solvable in radicals if and only if $n \geq 4$.

Namely, for $n \geq 5$ the subgroup $A_{n}<S_{n}$ is simple. (It is easier to show that the subgroup of A_{n} generated by the commutators $g^{-1} h^{-1} g h$ is the whole group A_{n}, so that any homomorphism to an abelian group from A_{n} has A_{n} as the kernel, so there are not subgroups $H \triangleleft A_{n}$ such that A_{n} / H is abelian.)

