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Homology groups

Contractible spaces

Let A" be the n-dimensional simplex (seen as a simplicial complex, i.e.,
including all of its subsimplices). We have Hy(A") = Z. One can show
that Hx(A™) =0 for all k > 1. In fact, homology can not distinguish A"
from the space consisting of a single point, since A" is contractible. A
space X is called contractible if there exists continuous map

f(x,t) : X x [0,1] — X such that f(x,0) = x and f(x, 1) is constant, i.e.,
if X can be continuously contracted to a point. Homology groups of any
contractible space are the same as the homology group of a single point.

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra Il 2020, March 31 2/13



Brouwer fixed point theorem

Theorem 1

If f: A" — A" |s continuous, then there exists x € A" such that
f(x) =x. (le., f has a fixed point.)

(Prove it for n = 1)

Suppose that it is not true, and let ¥ be a continuous map without a fixed
point. For every x € A" consider the ray from f(x) to x, continue it to
the intersection with the boundary of A”. Let g(x) be the point of
intersection. Then g : A" — QA" is a continuous function. Consider the
homomorphism g, : Hp_1(A") — H,—1(OA"). But for every y € OA" we
have g(y) =y, so the homology class of JA" is mapped to the generator
of the homology group H,_1(0A") = Z. We get that 0 is mapped to a
non-zero element, which is impossible.
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Galois theory

Automorphisms of fields

Recall that an isomorphism of fields ¢ : F; — F; is a bijective map
preserving the field operations, i.e., such that

¢(a+ b) = ¢(a) + ¢(b), ¢(ab) = ¢(a)d(b), (a/b) = ¢(a)/d(b). In
particular, ¢(0) =0, ¢(1) = 1. Any homomorphism between fields is
injective, and is an isomorphism with the image.

An isomorphism of a field with itself is called an automorphism.
Example: If F is a field of characteristic p, then x — xP is an
automorphism of F. (Follows from the binomial formula.) It is called the
Frobenius automorphism.
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Galois theory

Theorem 2

Let f(x) € F[x] be an irreducible polynomial. Let E be an algebraic
closure of F. Let v, 3 € E be roots of f(x). Then the map ¢(a) = 3,
¢(x) = x for x € F, extends to a unique isomorphism F(a) — F(5).

The proof is recalling the fact, that both fields are isomorphic to F[x]/(f)
and the corresponding isomorphism maps x to « or 5.

We say that «, 5 € E are conjugate over F if they are roots of the same
irreducible polynomial f(x) € F[x]. Recall that for any element «
algebraic over F there exists a unique irreducible polynomial f(x) (up to
multiplication by a constant) such that f(a) = 0.
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Galois theory

So, the last theorem can be reformulated as

Theorem 3

Two elements «, 3 algebraic over F are conjugate over F if and only if
they are roots of the same irreducible polynomial over F.

For example, two complex numbers z;, zo € C are conjugate over R if and
only if they are equal or conjugate (in the usual sense of complex
conjugation), since irreducible polynomial of a + ib is

x2 — 2ax + (a® + b?), which has roots a + ib and a — ib.
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Galois theory

Examples: the map a + bv/2 — a— by/2 is an automorphism of Q(ﬂ)
Consequently, a+ by/2 and a — by/2 are conjugate over Q.
The map V2 2 (—% + @l) extends to an isomorphism

Q(v2) = Q <\3ﬁ <—% + §l>> and the elements v/2 and
V2 (—% + §/> are conjugate.
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Galois theory

If o is an automorphism of a field F, then its fixed field is the set of
elements x € F such that o(x) = x. Note that o(x) = x and o(y) =y
imply o(x +y) =o(x) +o(y) =x+y, o(x —y) =0(x) —o(y) =x—y,
o(xy) = o(x)o(y) = xy, o(x/y) = o(x)/o(y) = x/y. Consequently, the
set of solutions of o(x) = x is a subfield of F.

For example, the fixed field of the complex conjugation is R. The fixed
field of the Frobenius automorphism is the set of roots of z° — z, i.e., Zp.
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Galois theory

More generally, we can consider a set of automorphisms S of F. Its fixed

field Fs is the set of elements x € F such that o(x) = x for every o € S.
Note that S will generate a group G, and if x € Fg, then x € Fg. So, it is
natural to consider groups of automorphisms of F and their fixed fields.
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Galois theory

Galois group

Recall that an extension of a field F is a field E such that F C E. We are
interested in automorphisms of the extension, i.e., automorphisms

¢ : E — E such that ¢(x) = x for every x € F. Note that such an
automorphism is a linear map of the F-vector space E.

Example: complex conjugation is an automorphism of the extension
RcC.

The Galois group G(E/F) is the group of all automorphisms of the
extension F C E, i.e., the group of all automorphisms of E fixing every
element of F. We have then F C Eg(g/F).
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Galois theory

If G is a group of automorphisms of F, then we have G < G(F/Fg). For
every extension F C E we have F C Egg/F).

We will be interested in intermediate subfields F C K C E of an extension
F C E. If His a subgroup of G(E/F), then F C Ey C E. Conversely, if
K is an intermediate subfield, then we can consider the subgroup
G(E/K) < G(E/F), (every automorphism fixing K also fixes F). We get
two maps in two directions between the set of intermediate subfields and
the set of subgroups of G(E/F). One map transforms a subfield K into
the subgroup G(E/K). The other map transforms a subgroup H to the
subfield Ey. Our goal is to describe a class of extensions for which these
two maps are inverse to each other. Then we will get a bijection between
the set of intermediate fields and the set of subgroups of G(E/K). This
will make it possible to study subfields using group theory.
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Galois theory

An example.

Consider the field Q(v/2,1/3). We can write it as Q(v/2)(v/3) or as
Q(v/3)(V/2). It follows that there are automorphisms of Q C Q(v/2,/3)

given by
aﬁ(\@) = V2, U\/ﬁ(\/g) =3,

Uﬁ(ﬁ) - \@, O'\/g(\/g) - —\@.

Their composition (in both orders) is the automorphism
V2 =2, V3 V3.

The group generated by o 5 and o /3 is Zo © Z> (i.e., the Klein's 4-group).

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra Il 2020, March 31 12/13



An example.

Note that minimal polynomial of v/2 over Q is x> — 2, so any
automorphism g € G(Q(v/2,+/3)/Q) must satisfy g(v/2) = v/2 or

g(v/2) = —v/2. The same is true for v/3. If you know g(+/2) and g(+/3)
for g € G(Q(v/2,v3)/Q), then you know g. It follows that we have found
all elements of G(Q(v/2,v/3)/Q).

This group has three sub-groups of order two (o 5), (0, /3), and

(050, /35). There fixed fields are Q(v/3), Q(+v2), and Q(v/6), respectively.
In this case the constructed maps between subfields and subgroups are
bijections.
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