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Galois Theory

Extensions of isomorphisms

Let F ⊂ E be a field extension. We know that if α, β ∈ E are conjugate in
E , then there exists an isomorphism φ : F (α) −→ F (β) fixing F . Can we
extend φ to an automorphism of E?

Theorem 1 (Isomorphism Extension Theorem)

Let E be an algebraic extension of a field F . Let σ : F −→ F ′ be an
isomorphism of feilds. Let F ′ be an algebraic closure of F ′. Then there
exists an isomorphism τ : E −→ E ′, where E ′ is a subfield of F ′ such that
τ(a) = σ(a) for all a ∈ F . In other words, σ can be extended to an
isomorphism from E to a subfield of F ′.

The proof is straightforward, if one uses transfinite induction or Zorn’s
Lemma. The idea is to extend σ to F (α1), then to F (α1)(α2), etc..
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Galois Theory

Uniqueness of algebraic closures

Corollary 2

Let F 1 and F 2 be two algebraic closures of F . Then there exists an
isomorphism α : F 1 −→ F 2 fixing F .

Proof: An isomorphism τ : F 1 −→ τ(F 1) ⊂ F 2 exists by the Isomorphism
Extension Theorem. But by the same theorem, the inverse
τ−1 : τ(F 1) −→ F 1 can be extended to an isomorphism from the whole
F 2 to a subfield of F 1. But τ−1 is already onto, there is nowhere to
extend anymore. So, the only possibility is that τ(F 1) is the whole F 2,
i.e., that τ is onto.
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Galois Theory

Counting isomorphisms

Theorem 3

Let F ⊂ E be a finite field extension. Let σ : F −→ F ′ be an isomorphism
of fields. Then the number of extensions of σ to an isomorphism
τ : E −→ τ(E ) ⊂ F ′ is finite and depends only on F ⊂ E .

Proof: Let us show at first that the number of extensions is finite. Since
the extension F ⊂ E is finite, we have E = F (α1, α2, . . . , αn) for some
algebraic elements αi ∈ E . If αi is a root of a polynomial fi (x) ∈ F [x ],
then τ(αi ) must be a root of σ(fi (x)) ∈ F ′[x ]. But there are only a finite
number of roots of σ(fi (x)) in F ′, therefore there are only a finite number
of possible values for τ(αi ). But if we know all τ(αi ), then we know τ . It
follows that there is only a finite number of possibilities for τ .
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Galois Theory

The fact that the number of possible extensions does not depend on F ′, σ,
or F ′ follows from the uniqueness of the algebraic closure and the
extension theorem. Namely, if F ′′ is another field, and σ′ : F −→ F ′′ is
another isomorphism, then we can identify F ′ with F ′′ by the isomorphism
σ′′ ◦ σ−1 : F ′ −→ F ′′. Then we can extend this isomorphism to an
isomorphism of the algebraic closures. This will identify F ′ with F ′′, F ′

with F ′′, so must be the same in both cases.
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Galois Theory

Denote by {E : F} the number of possible extensions of an isomorphism
σ : F −→ F ′ to an isomorphism τ : E −→ τ(E ) ⊂ F ′. We know that this
number depends only on the extension F ⊂ E . We call it index of the
extension. Note, that since it does not depend on σ and F ′, we may take
σ : F −→ F to be the identical isomorphism σ(x) = x . Then {E : F} is
defined as the number of isomorphisms τ : E −→ τ(E ) ⊂ F such that
τ(x) = x for all x ∈ F .
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Galois Theory

Theorem 4

If F ⊂ E ⊂ K , then {K : F} = {K : E}{E : F}.

Proof: There are {E : F} ways to extend the identity isomorphism
F −→ F to an isomorphism σ : E −→ σ(E ) ⊂ F . Each of them can be
extended to an isomorphism τ : K −→ τ(K ) ⊂ E = F {K : E} times.
This equality suggests that {E : F} might be equal to [E : F ]. It is often
true, but not always.
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Galois Theory

An example.

Consider the field Q(
√

2,
√

3). Recall that we have automorphisms of
Q ⊂ Q(

√
2,
√

3) given by

σ√2(
√

2) = −
√

2, σ√2(
√

3) =
√

3,

σ√3(
√

2) =
√

2, σ√3(
√

3) = −
√

3.

and their composition

√
2 7→ −

√
2,

√
3 7→ −

√
3.
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Galois Theory

An example.

The identity automorphism Q −→ Q can be extended to Q(
√

2) in two
ways: as identity or as σ√2, since any extension must map the root

√
2 of

x2 − 2 to a root of x2 − 2. We have, therefore,
{Q(
√

2) : Q} = [Q(
√

2) : Q] = 2. Similarly, an extension of the identity
automorphism on Q(

√
2) to an automorphism of Q(

√
2,
√

3) must be
either identity or σ√3 for a similar reason. It follows that

{Q(
√

2,
√

3) : Q(
√

2)} = [Q(
√

2,
√

3) : Q(
√

2)] = 2. We have also seen
that extensions of the identity automorphism of Q to Q(

√
2,
√

3) is
necessarily one of the automorphisms Id , σ√2, σ

√
3, σ
√
2σ
√
3, so

{Q(
√

2,
√

3) : Q} = [Q(
√

2,
√

3) : Q] = 4.
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Galois Theory

Splitting field

Let F be a field, and let F be its algebraic closure. Let {fi} be a collection
of polynomials in F [x ]. Then the field generated by F and all roots of the
polynomials fi is called the splitting field of the collection. A field K ⊃ F
is called a splitting filed over F if it is the splitting field of some collection
of polynomials from F [x ].
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Galois Theory

Examples: Q(
√

2) is the splitting field of x2 − 2 over Q. Q( 3
√

2) is not the
splitting field of x3 − 2, since it does not contain the other roots of x3 − 2.

The splitting field of x3−2 is Q
(

3
√

2,−1
2 +

√
3
2 i

)
and has degree 6 over Q.
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Galois Theory

Theorem 5

A field E , where F ⊂ E ⊂ F is a splitting field over F if and only if every
automorphism σ of F fixing F is an automorphism of E , i.e., satisfies
σ(E ) = E .

Proof: Suppose that E is the splitting field of a collection {fi} of
polynomials in F [x ]. Every automorphism σ : F −→ F fixing every
element of F will fix every fi (since their coefficients are in F ). Therefore,
σ will just permute the roots of fi . But E is generated by F and the roots,
so σ(E ) = E .
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Galois Theory

Theorem 6

A field E , where F ⊂ E ⊂ F is a splitting field over F if and only if every
automorphism σ of F fixing F is an automorphism of E , i.e., satisfies
σ(E ) = E .

Proof: Suppose now that every automorphism of F fixing F leaves E
invariant. Let α ∈ E . Since E ⊂ F , α is algebraic, hence is a root of a
polynomial f (x) ∈ F [x ]. Take the irreducible polynomial g(x) ∈ F [x ] for
which α is a root. Let β be another root of g(x). Then α 7→ β can be
extended to an isomorphism σ : F (α) −→ F (β) fixing F . By the extension
theorem, σ can be extended to an automorphism τ of F . Then, by our
assumption, τ(E ) = E . But τ(α) = β. This shows that β ∈ E . We have
proved that E contains all roots of g(x). We can take then the set of all
irreducible polynomials g(x) ∈ F [x ] with a root in E , then E will be equal
to the set of all their roots, in particular it will be generated by them, so it
is a splitting field.
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