MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 7

A reminder

Theorem 1
Let $F \subset E \subset \bar{F}$ be fields. Then E is a splitting field over F if and only if every automorphism σ of \bar{F} fixing every element of F satisfies $\sigma(E)=E$.

Let $F \subset E$. We say that a polynomial $f(x) \in F[x]$ splits in E if it factors over E into a product of linear polynomials.

Proposition 2
Let E be a splitting field over F. Then every irreducible polynomial $f(x) \in F[x]$ that has a root in E splits in E.

The proof is the same as the proof of the theorem. If α and β are roots of an irreducible polynomial $f(x) \in F[x]$ and $\alpha \in E$, then the isomorphism $F(\alpha) \rightarrow F(\beta)$ extends to an automorphism σ of \bar{F} which satisfies $\sigma(E)=E$. But this means that $\sigma(\alpha)=\beta \in E$, so $f(x)$ splits in E.

Corollary 3

If $E \subseteq \bar{F}$ is a splitting field over F, then every isomorphism $\sigma: E \rightarrow \sigma(E) \subset \bar{F}$ fixing F is an automorphism of E. In particular, $\{E: F\}=|G(E / F)|$.

Proof: Every such a isomorphism σ can be extended to an automorphism of \bar{F}. Therefore, by Theorem $1, \sigma$ is an automorphism of E.

Our next aim is to understand when $\{E: F\}=[E: F]$. Let $f(x) \in F[x]$. An element $\alpha \in \bar{F}$ such that $f(\alpha)=0$ is a root of multiplicity k if $(x-\alpha)^{k}$ divides $f(x)$, and k is the greatest integer with this property.
We can define a formal derivative of a polynomial
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ as
$f^{\prime}(x)=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1}$. It is easy to check that this derivative satisfies all the usual properties:
$(a f(x)+b g(x))^{\prime}=a f^{\prime}(x)+b g^{\prime}(x)$ for $f, g \in F[x]$ and $a, b \in F$; $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$. It follows that if α is a root of $f(x)$ multiplicity k, then $f(x)=(x-\alpha)^{k} g(x)$, so
$f^{\prime}(x)=k(x-\alpha)^{k-1} g(x)+(x-\alpha)^{k} g^{\prime}(x)=(x-\alpha)^{k-1}\left(k g(x)+(x-\alpha) g^{\prime}(x)\right)$.
If the field is of characteristic 0 , then we see that α is a root of $f^{\prime}(x)$ of multiplicity $k-1$. If characteristic of F is non-zero, then it may happen that $f^{\prime}(x)=0$ and this argument doesn't work.

Theorem 4
Let $f(x) \in F[x]$ be irreducible. Then all zeros of $f(x)$ in \bar{F} have the same multiplicities.

Proof: For any two roots α, β of $f(x)$ there is an automorphism σ of \bar{F} such that $\sigma(\alpha)=\beta$.
It follows that an irreducible polynomial $f(x) \in F[x]$ factors as $a \prod_{i}\left(x-\alpha_{i}\right)^{k}$ for some $k \in \mathbb{N}$ and $a \in F \backslash\{0\}$.
Note that an irreducible polynomial $f(x)$ over a field of characteristic 0 can not have multiple roots, since otherwise $f(x)$ and $f^{\prime}(x)$ have a non-trivial common divisor.

Example

Consider the field $\mathbb{Z}_{p}(t)$ of rational functions in t over \mathbb{Z}_{p}. Denote $y=t^{p}$ and consider $\mathbb{Z}_{p}(t)$. We have $\mathbb{Z}_{p}(y) \subset \mathbb{Z}_{p}(t)$. Then $\mathbb{Z}_{p}(t)$ is algebraic extension of $\mathbb{Z}_{p}(y)$, because t is a root of $x^{p}-y \in \mathbb{Z}_{p}(y)[x]$. Note that in $\mathbb{Z}_{p}(t)$ we have $y=t^{p}$ and $x^{p}-y=x^{p}-t^{p}=(x-t)^{p}$. The polynomial $x^{p}-y$ is irreducible, because any other factor of $x^{p}-y$ in $\mathbb{Z}_{p}(t)$ must be $(x-t)^{k}$ for some k, but then the value at 0 is $(-t)^{k}$, which belongs to $\mathbb{Z}_{p}(y)$ only when $k=0$ or $k=p$. We see that $x^{p}-y$ is irreducible over $\mathbb{Z}_{p}(y)$ and factors as $(x-t)^{p}$ over $\mathbb{Z}_{p}(t)$.

Suppose that $f(x) \in F[x]$ is an irreducible polynomial with multiple roots. Let $\alpha \in \bar{F}$ be a root of f. Then any extension of the identity automorphism of F to $F(\alpha)$ is of the form $F(\alpha) \rightarrow F(\beta)$ mapping α to another root β of f. It follows that $\{F(\alpha): F\}$ is equal to the number of distinct roots of $f(x)$, while $[F(\alpha): F]$ is equal to the degree of f, i.e., to the total number of roots counted with multiplicities. We see that actually $[F(\alpha): F]=k\{F(\alpha): F\}$, where k is the multiplicity of α as a root of an irreducible polynomial.

Theorem 5
If E is a finite extension of F, then $\{E: F\}$ divides $[E: F]$.

Definition 1
A finite extension $F \subseteq E$ is separable if $\{E: F\}=[E: F]$. An element $\alpha \in \bar{F}$ is separable over F if $F \subseteq F(\alpha)$ is a separable extension. An irreducible polynomial $f(x) \in F[x]$ is separable if every its root is separable over F.

Theorem 6

If K is a finite extension of E and E is a finite extension of F, then K is separable over F if and only if K is separable over E and E is separable over F. A finite extension $F \subset E$ is separable if and only if every element of E is separable over F (i.e., is a simple root of an irreducible polynomial over F).

Perfect fields

A field F is called perfect if every finite extension $F \subset E$ is separable. We have seen that every field of characteristic zero is perfect. We have seen that the field $\mathbb{Z}_{p}(y)$ is not perfect.

We will need the following fact.

Lemma 7

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \bar{F}[x]$. If $(f(x))^{m} \in F[x]$ and $m \cdot 1 \neq 0$ in F, then $f(x) \in F[x]$.

Proof: We prove by induction on r that $a_{n-r} \in F$. We have $(f(x))^{m}=x^{n m}+m a_{n-1} x^{n m-1}+\cdots$. Since $m \neq 0$ in F and $m a_{n-1} \in F$, we get that $a_{n-1} \in F$. Suppose that we know that $a_{n-i} \in F$ for all $i<r$. The coefficient at $x^{m n-r}$ in $(f(x))^{m}$ is equal to the sum of products all possible products $a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}$ such that $i_{1}+i_{2}+\cdots+i_{m}=n m-r$. There are m such products of the form $a_{n} a_{n} \cdots a_{n} a_{n-r}$, which will contribute $m a_{n-r}$ into the sum (since $a_{n}=1$). In all the other products we will have $\min \left(i_{1}, i_{2}, \ldots, i_{m}\right)>n-r$. By the inductive hypothesis all such products $a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}$ belong to F. It follows that $m a_{n-r} \in F$, hence $a_{n-r} \in F$.

Theorem 8

Every finite field is perfect.
Proof. Let E be a finite extension of a finite field F. Let p be the characteristic of F. Let $\alpha \in E$. We want to show that α is separable over F. Let $f(x) \in F[x]$ be irreducible such that $f(\alpha)=0$. Let k be the multiplicity of α. Then $f(x)=\prod_{i}\left(x-\alpha_{i}\right)^{k}=\left(\prod_{i}\left(x-\alpha_{i}\right)^{p^{\prime}}\right)^{e}$, where $k=p^{\prime} e$ and e is not divisible by p. Then by the lemma above $\Pi\left(x-\alpha_{i}\right)^{p^{\prime}} \in F[x]$. Since f is irreducible, this means that $e=1$, i.e., k is a power of p.

We have $f(x)=\prod_{i}\left(x^{p^{\prime}}-\alpha_{i}^{p^{\prime}}\right)$. Denote $g(x)=\prod_{i}\left(x-\alpha_{i}^{p_{\prime}}\right)$. Then all the roots of $g(x)$ are distinct, i.e., $g(x)$ is separable over F, so $F \subseteq F\left(\alpha^{p^{\prime}}\right)$ is a separable extension. The map $x \mapsto x^{p}$ is a field isomorphism and is injective. The field $F\left(\alpha^{p^{\prime}}\right)$ is finite, so the map $x \mapsto x^{p}$ must be an automorphism (since it is an injective map from a finite set to itself). Apply it / times to get the automorphism $x \mapsto x^{p^{\prime}}$. Since it is a bijection, it is also onto. We have $\alpha \mapsto \alpha^{p^{\prime}}$. Since $\alpha^{p^{\prime}}$ was separable, α is also separable.

