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Galois Theory

A reminder

Theorem 1

Let F ⊂ E ⊂ F be fields. Then E is a splitting field over F if and only if
every automorphism σ of F fixing every element of F satisfies σ(E ) = E.
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Galois Theory

Let F ⊂ E . We say that a polynomial f (x) ∈ F [x ] splits in E if it factors
over E into a product of linear polynomials.

Proposition 2

Let E be a splitting field over F . Then every irreducible polynomial
f (x) ∈ F [x ] that has a root in E splits in E .

The proof is the same as the proof of the theorem. If α and β are roots
of an irreducible polynomial f (x) ∈ F [x ] and α ∈ E , then the isomorphism
F (α)→ F (β) extends to an automorphism σ of F which satisfies
σ(E ) = E . But this means that σ(α) = β ∈ E , so f (x) splits in E .
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Galois Theory

Corollary 3

If E ⊆ F is a splitting field over F , then every isomorphism
σ : E → σ(E ) ⊂ F fixing F is an automorphism of E . In particular,
{E : F} = |G (E/F )|.

Proof: Every such a isomorphism σ can be extended to an automorphism
of F . Therefore, by Theorem 1, σ is an automorphism of E .
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Galois Theory

Our next aim is to understand when {E : F} = [E : F ]. Let f (x) ∈ F [x ].
An element α ∈ F such that f (α) = 0 is a root of multiplicity k if
(x − α)k divides f (x), and k is the greatest integer with this property.
We can define a formal derivative of a polynomial
f (x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 as

f ′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · ·+ a1. It is easy to check that
this derivative satisfies all the usual properties:
(af (x) + bg(x))′ = af ′(x) + bg ′(x) for f , g ∈ F [x ] and a, b ∈ F ;
(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x). It follows that if α is a root of f (x)
multiplicity k, then f (x) = (x − α)kg(x), so
f ′(x) = k(x−α)k−1g(x)+(x−α)kg ′(x) = (x−α)k−1(kg(x)+(x−α)g ′(x)).
If the field is of characteristic 0, then we see that α is a root of f ′(x) of
multiplicity k − 1. If characteristic of F is non-zero, then it may happen
that f ′(x) = 0 and this argument doesn’t work.
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Galois Theory

Theorem 4

Let f (x) ∈ F [x ] be irreducible. Then all zeros of f (x) in F have the same
multiplicities.

Proof: For any two roots α, β of f (x) there is an automorphism σ of F
such that σ(α) = β.
It follows that an irreducible polynomial f (x) ∈ F [x ] factors as
a
∏

i (x − αi )
k for some k ∈ N and a ∈ F \ {0}.

Note that an irreducible polynomial f (x) over a field of characteristic 0
can not have multiple roots, since otherwise f (x) and f ′(x) have a
non-trivial common divisor.
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Galois Theory

Example

Consider the field Zp(t) of rational functions in t over Zp. Denote y = tp

and consider Zp(t). We have Zp(y) ⊂ Zp(t). Then Zp(t) is algebraic
extension of Zp(y), because t is a root of xp − y ∈ Zp(y)[x ]. Note that in
Zp(t) we have y = tp and xp − y = xp − tp = (x − t)p. The polynomial
xp − y is irreducible, because any other factor of xp − y in Zp(t) must be
(x − t)k for some k , but then the value at 0 is (−t)k , which belongs to
Zp(y) only when k = 0 or k = p. We see that xp − y is irreducible over
Zp(y) and factors as (x − t)p over Zp(t).
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Galois Theory

Suppose that f (x) ∈ F [x ] is an irreducible polynomial with multiple roots.
Let α ∈ F be a root of f . Then any extension of the identity
automorphism of F to F (α) is of the form F (α)→ F (β) mapping α to
another root β of f . It follows that {F (α) : F} is equal to the number of
distinct roots of f (x), while [F (α) : F ] is equal to the degree of f , i.e., to
the total number of roots counted with multiplicities. We see that
actually [F (α) : F ] = k{F (α) : F}, where k is the multiplicity of α as a
root of an irreducible polynomial.

Theorem 5

If E is a finite extension of F , then {E : F} divides [E : F ].
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Galois Theory

Definition 1

A finite extension F ⊆ E is separable if {E : F} = [E : F ]. An element
α ∈ F is separable over F if F ⊆ F (α) is a separable extension. An
irreducible polynomial f (x) ∈ F [x ] is separable if every its root is separable
over F .

Theorem 6

If K is a finite extension of E and E is a finite extension of F , then K is
separable over F if and only if K is separable over E and E is separable
over F . A finite extension F ⊂ E is separable if and only if every element
of E is separable over F (i.e., is a simple root of an irreducible polynomial
over F ).
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Galois Theory

Perfect fields

A field F is called perfect if every finite extension F ⊂ E is separable.
We have seen that every field of characteristic zero is perfect. We have
seen that the field Zp(y) is not perfect.
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We will need the following fact.

Lemma 7

Let f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ F [x ]. If (f (x))m ∈ F [x ] and

m · 1 6= 0 in F , then f (x) ∈ F [x ].

Proof: We prove by induction on r that an−r ∈ F . We have
(f (x))m = xnm + man−1x

nm−1 + · · · . Since m 6= 0 in F and man−1 ∈ F ,
we get that an−1 ∈ F . Suppose that we know that an−i ∈ F for all i < r .
The coefficient at xmn−r in (f (x))m is equal to the sum of products all
possible products ai1ai2 · · · aim such that i1 + i2 + · · ·+ im = nm− r . There
are m such products of the form anan · · · anan−r , which will contribute
man−r into the sum (since an = 1). In all the other products we will have
min(i1, i2, . . . , im) > n − r . By the inductive hypothesis all such products
ai1ai2 · · · aim belong to F . It follows that man−r ∈ F , hence an−r ∈ F .
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Theorem 8

Every finite field is perfect.

Proof. Let E be a finite extension of a finite field F . Let p be the
characteristic of F . Let α ∈ E . We want to show that α is separable over
F . Let f (x) ∈ F [x ] be irreducible such that f (α) = 0. Let k be the

multiplicity of α. Then f (x) =
∏

i (x − αi )
k =

(∏
i (x − αi )

pl
)e

, where

k = ple and e is not divisible by p. Then by the lemma above∏
(x − αi )

pl ∈ F [x ]. Since f is irreducible, this means that e = 1, i.e., k is
a power of p.
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We have f (x) =
∏

i

(
xp

l − αpl

i

)
. Denote g(x) =

∏
i

(
x − αpl

i

)
. Then all

the roots of g(x) are distinct, i.e., g(x) is separable over F , so F ⊆ F (αpl )
is a separable extension. The map x 7→ xp is a field isomorphism and is
injective. The field F (αpl ) is finite, so the map x 7→ xp must be an
automorphism (since it is an injective map from a finite set to itself).

Apply it l times to get the automorphism x 7→ xp
l
. Since it is a bijection,

it is also onto. We have α 7→ αpl . Since αpl was separable, α is also
separable.

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra II 2020, April 7 13 / 13


	Galois Theory

