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Galois Theory

Primitive Element Theorem

Theorem 1

Let E be a finite separable extension of a field F . Then there exists α ∈ E
such that E = F (α).

Proof: If F is finite, then E is also finite. We know that then the
multiplicative group E ∗ = E \ {0} is cyclic. Let α ∈ E be its generator.
Then every element of E ∗ is of the form αn, so E = F (α).
Suppose now that F is infinite. It is enough to prove that for any
extension F (β, γ) there exists α ∈ F (β, γ) such that F (β, γ) = F (α), and
then use induction. Let β = β1, β2, . . . , βn be the roots of the irreducible
polynomial f (x) ∈ F [x ] with root β. Let γ = γ1, γ2, . . . , γm be the roots
of the irreducible polynomial g(x) ∈ F [x ] with root γ. (All are considered
to be elements of F .)
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Galois Theory

Since F is infinite, we can find a ∈ F such that a 6= (βi − β)/(γ − γj) for
any i , j with j 6= 1. Denote α = β + aγ. We have then
α = β + aγ 6= βi + aγj , so α− aγj 6= βi . Consider
h(x) = f (α− ax) ∈ F (α)[x ]. Then h(γ) = f (β) = 0. However, h(γj) 6= 0
for j 6= 1, since βi are the only roots of f (x), so α− aβi are the only roots
of h(x). The irreducible polynomial r(x) ∈ F (α)[x ] with the root γ must
divide h(x) and g(x), since both of them have γ as a root. But the only
common root in F of g(x) and h(x) is γ. Consequently, r(x) = x − γ, i.e.,
γ ∈ F (α). It follows that also β = α− aγ ∈ F (α), so that
F (β, γ) = F (α).
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Example

Consider the extension Q(
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3). It must be simple, since Q is perfect.
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Galois Theory

Normal Extensions

Definition 1

A finite extension F ⊆ E is a finite normal extension if it is separable and
splitting.

Theorem 2

Consider a chain of extensions F ⊆ E ⊆ K. Suppose that F ⊆ K is a
finite normal extension. Then E ⊆ K is a finite normal extension. The
group G (K/E ) coincides with the subgroup of those elements σ of
G (K/F ) that fix every element of E . Two elements σ, τ ∈ G (K/F ) induce
the same isomorphism E 7→ σ(E ) = τ(E ) if and only if they are in the
same coset of G (K/E ) in G (K/F ).
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Proof: The field K is generated by F and all the roots of some set
P ⊂ F [x ]. Hence it is generated by E ⊇ F and all the roots of the same
set P ⊂ F [x ] ⊆ E [x ]. If every element of K is a root of a polynomial
f (x) ∈ F [x ] with no multiple roots, then it is a root of f (x) ∈ F [x ] ⊆ E [x ]
with no multiple roots. It follows that E ⊆ K is a normal extension.
The group G (K/E ) is a subgroup of G (K/F ) because any automorphism
fixing every element of E fixes every element of F ⊆ E . Two elements
σ, τ ∈ G (K/F ) define the same isomorphism from E if and only if σ−1 ◦ τ
is the identity automorphism of E , i.e., belongs to G (K/E ). But
σ−1τ ∈ G (K/E ) is equivalent to τG (K/E ) = σG (K/E ).
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Galois Theory

Main Theorem of Galois Theory

Theorem 3

Let F ⊆ K be a finite normal extension. Then we have a bijection
E 7→ G (K/E ) between the set of intermediate fields {E : F ⊆ E ⊆ K}
and the set of subgroups of G (K/F ). The inverse of this bijection is the
map H 7→ KH = {x ∈ K : σ(x) = x , ∀σ ∈ H}. We call these bijection
the Galois correspondence. It has the following properties.

1 The described maps are inverse to each other, i.e., E = KG(K/E) for
every intermediate field E , and H = G (K/KH) for every subgroup
H ≤ G (K/F ).

2 [K : E ] = |G (K/E )| and [E : F ] = [G (K/F ) : G (K/E )].

3 E is a normal extension of F if and only if G (K/E ) is a normal
subgroup of G (K/F ). If it is so, then G (E/F ) ∼= G (K/F )/G (K/E ).

4 The Galois correspondence is order-inverting: If E1 ⊂ E2, then
G (K/E1) > G (K/E2).
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Proof

We have E ⊆ KG(K/E), because every element σ ∈ G (K/E ) fixes every
element of E , by definition. Suppose that α ∈ K \ E . Then there is an
automorphism σ of E fixing E and moving α to another conjugate
element. But K is a splitting field, so every automorphism of E fixing E
leaves K invariant, so σ ∈ G (K/E ) and σ(α) 6= α, so α /∈ KG(K/E). This
shows that every element of KG(K/E) must be an element of E , i.e., that
E = KG(K/E). We have shown E 7→ G (K/E ) 7→ KG(K/E) = E . This does
not show yet that the Galois correspondence is a bijection, since it is
possible that not all subgroups of G (K/F ) are of the form G (K/E ) for
some E .
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Galois Theory

Proof

We have already proved [K : E ] = {K : E} = |G (K/E )| for normal
extensions. (The first equality is separability, the second one is being a
splitting extension.) We proved [E : F ] = [G (K/F ) : G (K/E )] in the
previous theorem.
Let H ≤ G (K/F ). We know that H ≤ G (K/KH), by definition. Suppose
that H < G (K/KH), i.e., that |H| < |G (K/KH)| = [K : KH ]. By the
Primitive Element Theorem,K = KH(α) for some α ∈ K . Consider
f (x) =

∏
σ∈H(x − σ(α)). Every element σ ∈ H will just permute the

factors, so σ(f ) = f , hence f (x) ∈ KH [x ]. Its degree is |H|. But the
degree of the irreducible polynomial g(x) ∈ KH [x ] with root α is equal to
[K : KH ]. We must have g(x)|f (x), which is a contradiction. It follows
that H = G (K/F ), which finishes the proof that the Galois
correspondence is a bijection.

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra II 2020, April 7 9 / 11



Galois Theory

Proof

It remains to prove property (3). For every intermediate field F ⊆ E ⊆ K ,
the field E is a separable extension of F . It is normal if and only if E is
splitting over F . To be splitting is equivalent to the condition that every
isomorphism from E fixing F is an automorphism of E . Every such an
isomorphism is an automorphism of K (since F ⊆ K is splitting). Hence,
F ⊆ E is normal if and only if σ(E ) = E for every σ ∈ G (E/F ). Suppose
that F ⊆ E is normal. Let σ ∈ G (K/F ) and τ ∈ G (K/E ). Then σ−1τσ is
the identity automorphism of E , since σ(E ) = E , so τσ(α) = σ(α) for
every α ∈ E , hence σ−1τσ(α) = α. This shows that σ−1τσ ∈ G (K/E ) for
every τ ∈ G (K/F ) and σ ∈ G (K/E ), i.e., that G (K/E ) E G (K/F ).
Conversely, suppose that G (K/E ) E G (K/F ). We have to show that
σ(E ) = E for every σ ∈ G (K/F ). Let α ∈ E . Let τ ∈ G (K/E ). Then
τ(σ(α)) = σ(σ−1τσ(α)). But σ−1τσ ∈ G (K/E ), so σ−1τσ(α) = α. It
follows that τ(σ(α)) = σ(α) for every τ ∈ G (K/E ), i.e., that
σ(α) ∈ KG(K/E) = E .
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Proof

It remains to show that if F ⊆ E is normal, then
G (E/F ) ∼= G (K/F )/G (K/E ). . . .
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