MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 7

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra II

Primitive Element Theorem

Theorem 1

Let E be a finite separable extension of a field F. Then there exists $\alpha \in E$ such that $E = F(\alpha)$.

Proof: If *F* is finite, then *E* is also finite. We know that then the multiplicative group $E^* = E \setminus \{0\}$ is cyclic. Let $\alpha \in E$ be its generator. Then every element of E^* is of the form α^n , so $E = F(\alpha)$. Suppose now that *F* is infinite. It is enough to prove that for any extension $F(\beta, \gamma)$ there exists $\alpha \in F(\beta, \gamma)$ such that $F(\beta, \gamma) = F(\alpha)$, and then use induction. Let $\beta = \beta_1, \beta_2, \ldots, \beta_n$ be the roots of the irreducible polynomial $f(x) \in F[x]$ with root β . Let $\gamma = \gamma_1, \gamma_2, \ldots, \gamma_m$ be the roots of the irreducible polynomial $g(x) \in F[x]$ with root γ . (All are considered to be elements of \overline{F} .)

Since F is infinite, we can find $a \in F$ such that $a \neq (\beta_i - \beta)/(\gamma - \gamma_i)$ for any *i*, *j* with $j \neq 1$. Denote $\alpha = \beta + a\gamma$. We have then $\alpha = \beta + a\gamma \neq \beta_i + a\gamma_i$, so $\alpha - a\gamma_i \neq \beta_i$. Consider $h(x) = f(\alpha - ax) \in F(\alpha)[x]$. Then $h(\gamma) = f(\beta) = 0$. However, $h(\gamma_i) \neq 0$ for $j \neq 1$, since β_i are the only roots of f(x), so $\alpha - a\beta_i$ are the only roots of h(x). The irreducible polynomial $r(x) \in F(\alpha)[x]$ with the root γ must divide h(x) and g(x), since both of them have γ as a root. But the only common root in \overline{F} of g(x) and h(x) is γ . Consequently, $r(x) = x - \gamma$, i.e., $\gamma \in F(\alpha)$. It follows that also $\beta = \alpha - a\gamma \in F(\alpha)$, so that $F(\beta, \gamma) = F(\alpha).$

Example

Consider the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})$. It must be simple, since \mathbb{Q} is perfect. We can check that, for example, $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$. We have $(\sqrt{2}+\sqrt{3})^2 = 5 + 2\sqrt{6}$, so $\sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Then $\sqrt{6}(\sqrt{2}+\sqrt{3}) = 2\sqrt{3} + 3\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, therefore $2\sqrt{3} + 3\sqrt{2} - 2(\sqrt{2}+\sqrt{3}) = \sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$, and then $\sqrt{2} + \sqrt{3} - \sqrt{2} = \sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Normal Extensions

Definition 1

A finite extension $F \subseteq E$ is a *finite normal extension* if it is separable and splitting.

Theorem 2

Consider a chain of extensions $F \subseteq E \subseteq K$. Suppose that $F \subseteq K$ is a finite normal extension. Then $E \subseteq K$ is a finite normal extension. The group G(K/E) coincides with the subgroup of those elements σ of G(K/F) that fix every element of E. Two elements $\sigma, \tau \in G(K/F)$ induce the same isomorphism $E \mapsto \sigma(E) = \tau(E)$ if and only if they are in the same coset of G(K/E) in G(K/F).

Proof: The field *K* is generated by *F* and all the roots of some set $P \subset F[x]$. Hence it is generated by $E \supseteq F$ and all the roots of the same set $P \subset F[x] \subseteq E[x]$. If every element of *K* is a root of a polynomial $f(x) \in F[x] \subseteq E[x]$. If every element of *K* is a root of $f(x) \in F[x] \subseteq E[x]$ with no multiple roots, then it is a root of $f(x) \in F[x] \subseteq E[x]$ with no multiple roots. It follows that $E \subseteq K$ is a normal extension. The group G(K/E) is a subgroup of G(K/F) because any automorphism fixing every element of *E* fixes every element of $F \subseteq E$. Two elements $\sigma, \tau \in G(K/F)$ define the same isomorphism from *E* if and only if $\sigma^{-1} \circ \tau$ is the identity automorphism of *E*, i.e., belongs to G(K/E). But $\sigma^{-1}\tau \in G(K/E)$ is equivalent to $\tau G(K/E) = \sigma G(K/E)$.

Main Theorem of Galois Theory

Theorem 3

Let $F \subseteq K$ be a finite **normal** extension. Then we have a bijection $E \mapsto G(K/E)$ between the set of intermediate fields $\{E : F \subseteq E \subseteq K\}$ and the set of subgroups of G(K/F). The inverse of this bijection is the map $H \mapsto K_H = \{x \in K : \sigma(x) = x, \forall \sigma \in H\}$. We call these bijection the **Galois correspondence**. It has the following properties.

- The described maps are inverse to each other, i.e., $E = K_{G(K/E)}$ for every intermediate field E, and $H = G(K/K_H)$ for every subgroup $H \le G(K/F)$.
- **2** [K : E] = |G(K/E)| and [E : F] = [G(K/F) : G(K/E)].
- So E is a normal extension of F if and only if G(K/E) is a normal subgroup of G(K/F). If it is so, then $G(E/F) \cong G(K/F)/G(K/E)$.

The Galois correspondence is order-inverting: If E₁ ⊂ E₂, then G(K/E₁) > G(K/E₂).

We have $E \subseteq K_{G(K/E)}$, because every element $\sigma \in G(K/E)$ fixes every element of E, by definition. Suppose that $\alpha \in K \setminus E$. Then there is an automorphism σ of \overline{E} fixing E and moving α to another conjugate element. But K is a splitting field, so every automorphism of \overline{E} fixing Eleaves K invariant, so $\sigma \in G(K/E)$ and $\sigma(\alpha) \neq \alpha$, so $\alpha \notin K_{G(K/E)}$. This shows that every element of $K_{G(K/E)}$ must be an element of E, i.e., that $E = K_{G(K/E)}$. We have shown $E \mapsto G(K/E) \mapsto K_{G(K/E)} = E$. This does not show yet that the Galois correspondence is a bijection, since it is possible that not all subgroups of G(K/F) are of the form G(K/E) for some E.

We have already proved $[K : E] = \{K : E\} = |G(K/E)|$ for normal extensions. (The first equality is separability, the second one is being a splitting extension.) We proved [E : F] = [G(K/F) : G(K/E)] in the previous theorem.

Let $H \leq G(K/F)$. We know that $H \leq G(K/K_H)$, by definition. Suppose that $H < G(K/K_H)$, i.e., that $|H| < |G(K/K_H)| = [K : K_H]$. By the Primitive Element Theorem, $K = K_H(\alpha)$ for some $\alpha \in K$. Consider $f(x) = \prod_{\sigma \in H} (x - \sigma(\alpha))$. Every element $\sigma \in H$ will just permute the factors, so $\sigma(f) = f$, hence $f(x) \in K_H[x]$. Its degree is |H|. But the degree of the irreducible polynomial $g(x) \in K_H[x]$ with root α is equal to $[K : K_H]$. We must have g(x)|f(x), which is a contradiction. It follows that H = G(K/F), which finishes the proof that the Galois correspondence is a bijection.

It remains to prove property (3). For every intermediate field $F \subseteq E \subseteq K$, the field E is a separable extension of F. It is normal if and only if E is splitting over F. To be splitting is equivalent to the condition that every isomorphism from E fixing F is an automorphism of E. Every such an isomorphism is an automorphism of K (since $F \subseteq K$ is splitting). Hence, $F \subseteq E$ is normal if and only if $\sigma(E) = E$ for every $\sigma \in G(E/F)$. Suppose that $F \subseteq E$ is normal. Let $\sigma \in G(K/F)$ and $\tau \in G(K/E)$. Then $\sigma^{-1}\tau\sigma$ is the identity automorphism of E, since $\sigma(E) = E$, so $\tau \sigma(\alpha) = \sigma(\alpha)$ for every $\alpha \in E$, hence $\sigma^{-1}\tau\sigma(\alpha) = \alpha$. This shows that $\sigma^{-1}\tau\sigma \in G(K/E)$ for every $\tau \in G(K/F)$ and $\sigma \in G(K/E)$, i.e., that $G(K/E) \trianglelefteq G(K/F)$. Conversely, suppose that $G(K/E) \trianglelefteq G(K/F)$. We have to show that $\sigma(E) = E$ for every $\sigma \in G(K/F)$. Let $\alpha \in E$. Let $\tau \in G(K/E)$. Then $\tau(\sigma(\alpha)) = \sigma(\sigma^{-1}\tau\sigma(\alpha))$. But $\sigma^{-1}\tau\sigma \in \mathcal{G}(K/E)$, so $\sigma^{-1}\tau\sigma(\alpha) = \alpha$. It follows that $\tau(\sigma(\alpha)) = \sigma(\alpha)$ for every $\tau \in G(K/E)$, i.e., that $\sigma(\alpha) \in K_{\mathcal{G}(K/E)} = E.$

It remains to show that if $F \subseteq E$ is normal, then $G(E/F) \cong G(K/F)/G(K/E)$