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Galois Theory

Primitive Element Theorem

Theorem 1

Let E be a finite separable extension of a field F. Then there exists a € E
such that E = F(«).

Proof: If F is finite, then E is also finite. We know that then the
multiplicative group E* = E \ {0} is cyclic. Let a € E be its generator.
Then every element of E* is of the form a”, so E = F(«).

Suppose now that F is infinite. It is enough to prove that for any
extension F([3,7) there exists a € F(3, ) such that F(5,v) = F(«), and
then use induction. Let 8 = 1, B>, ..., B, be the roots of the irreducible
polynomial f(x) € F[x] with root 5. Let v = ~v1,72,...,7m be the roots
of the irreducible polynomial g(x) € F[x] with root 7. (All are considered
to be elements of F.)
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Galois Theory

Since F is infinite, we can find a € F such that a # (8; — 3)/(y — ;) for
any /,j with j # 1. Denote « = 3 + ay. We have then

a =B+ ay# B+ ayj, so a— ay; # Bi. Consider

h(x) = f(a — ax) € F(a)[x]. Then h(vy) = f(5) = 0. However, h(v;) # 0
for j # 1, since (3; are the only roots of f(x), so « — af3; are the only roots
of h(x). The irreducible polynomial r(x) € F(«a)[x] with the root v must
divide h(x) and g(x), since both of them have v as a root. But the only
common root in F of g(x) and h(x) is . Consequently, r(x) = x — 7, i.e.,
v € F(a). It follows that also 5 = a — ay € F(«), so that

F(B,7) = F(a).
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Example

Consider the extension Q(v/2,/3). It must be simple, since Q is perfect.
We can check that, for example, Q(ﬁ, \/§) = Q(\ﬁ—i— \/§) We have
(vV2++/3)2 =5+2v6, so v6 € Q(v2 + /3). Then

V6(v2 +V3) = 2v/3 +3v2 € Q(v/2 + V/3), therefore

2v3+3v2 - 2(vV2+v3) = V2 € Q(v2+ V3), and then
V24+v3-v2=1v3€Q(V2+V3).
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Galois Theory

Normal Extensions

Definition 1
A finite extension F C E is a finite normal extension if it is separable and
splitting.

Theorem 2

Consider a chain of extensions F C E C K. Suppose that F C K is a
finite normal extension. Then E C K is a finite normal extension. The
group G(K/E) coincides with the subgroup of those elements o of
G(K/F) that fix every element of E. Two elements o,7 € G(K/F) induce
the same isomorphism E — o(E) = 7(E) if and only if they are in the
same coset of G(K/E) in G(K/F).
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Galois Theory

Proof: The field K is generated by F and all the roots of some set

P C F[x]. Hence it is generated by E O F and all the roots of the same
set P C F[x] C E[x]. If every element of K is a root of a polynomial

f(x) € F[x] with no multiple roots, then it is a root of f(x) € F[x] C E[x]
with no multiple roots. It follows that E C K is a normal extension.

The group G(K/E) is a subgroup of G(K/F) because any automorphism
fixing every element of E fixes every element of F C E. Two elements
0,7 € G(K/F) define the same isomorphism from E if and only if 071 o 7
is the identity automorphism of E, i.e., belongs to G(K/E). But

o~lr € G(K/E) is equivalent to 7G(K/E) = 0 G(K/E).
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Main Theorem of Galois Theory

Theorem 3

Let F C K be a finite normal extension. Then we have a bijection

E — G(K/E) between the set of intermediate fields {E : F C E C K}
and the set of subgroups of G(K/F). The inverse of this bijection is the
map H— Ky ={x € K : o(x) =x, Yo € H}. We call these bijection
the Galois correspondence. [t has the following properties.

© The described maps are inverse to each other, i.e., E = K¢k /) for
every intermediate field E, and H = G(K/Ky) for every subgroup
H < G(K/F).

@ [K:E]=|G(K/E)| and [E : F]=[G(K/F): G(K/E)].

© E is a normal extension of F if and only if G(K/E) is a normal
subgroup of G(K/F). If it is so, then G(E/F) = G(K/F)/G(K/E).

@ The Galois correspondence is order-inverting: If Ey C E,, then
G(K/E1) > G(K/E).

v
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Proof

We have E C Kg(k/E), because every element o € G(K/E) fixes every
element of E, by definition. Suppose that a € K\ E. Then there is an
automorphism ¢ of E fixing E and moving o to another conjugate
element. But K is a splitting field, so every automorphism of E fixing E
leaves K invariant, so o € G(K/E) and o(a) # «, so a ¢ Kgk/g)- This
shows that every element of Kk, g) must be an element of E, i.e., that
E = Kg(k/E).- We have shown E — G(K/E) — Kg(k/e) = E. This does
not show yet that the Galois correspondence is a bijection, since it is

possible that not all subgroups of G(K/F) are of the form G(K/E) for
some E.
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Proof

We have already proved [K : E] = {K : E} = |G(K/E)| for normal
extensions. (The first equality is separability, the second one is being a
splitting extension.) We proved [E : F] = [G(K/F) : G(K/E)] in the
previous theorem.

Let H < G(K/F). We know that H < G(K/Ky), by definition. Suppose
that H < G(K/Kp), i.e., that |H| < |G(K/Kyu)| = [K : Ky]. By the
Primitive Element Theorem,K = Ky(«a) for some a € K. Consider

f(x) = [I,en(x —o(a)). Every element o € H will just permute the
factors, so o(f) = f, hence f(x) € Ky[x]. Its degree is |H|. But the
degree of the irreducible polynomial g(x) € Ky[x] with root « is equal to
[K : Ky]. We must have g(x)|f(x), which is a contradiction. It follows
that H = G(K/F), which finishes the proof that the Galois
correspondence is a bijection.
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Proof

It remains to prove property (3). For every intermediate field F C E C K,
the field E is a separable extension of F. It is normal if and only if E is
splitting over F. To be splitting is equivalent to the condition that every
isomorphism from E fixing F is an automorphism of E. Every such an
isomorphism is an automorphism of K (since F C K is splitting). Hence,
F C E is normal if and only if o(E) = E for every 0 € G(E/F). Suppose
that F C E is normal. Let 0 € G(K/F) and 7 € G(K/E). Then ¢~ '70 is
the identity automorphism of E, since o(E) = E, so To(«a) = o(«) for
every a € E, hence 07 170(a) = a. This shows that 0170 € G(K/E) for
every T € G(K/F) and 0 € G(K/E), i.e., that G(K/E) 9 G(K/F).
Conversely, suppose that G(K/E) < G(K/F). We have to show that
o(E) = E for every 0 € G(K/F). Let a« € E. Let 7 € G(K/E). Then
7(o(a)) = o(c ro(a)). But 0170 € G(K/E), so 0 '10o(a) = a. It
follows that 7(o(a)) = o(«) for every 7 € G(K/E), i.e., that

O'(Oé) € KG(K/E) =E.
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Proof

It remains to show that if F C E is normal, then

G(E/F) = G(K/F)/G(K/E). ...
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