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Galois Theory

Main Theorem of Galois Theory

Theorem 1

Let F ⊆ K be a finite normal extension. Then we have a bijection
E 7→ G (K/E ) between the set of intermediate fields {E : F ⊆ E ⊆ K}
and the set of subgroups of G (K/F ). The inverse of this bijection is the
map H 7→ KH = {x ∈ K : σ(x) = x , ∀σ ∈ H}. We call these bijection
the Galois correspondence. It has the following properties.

1 The described maps are inverse to each other, i.e., E = KG(K/E) for
every intermediate field E , and H = G (K/KH) for every subgroup
H ≤ G (K/F ).

2 [K : E ] = |G (K/E )| and [E : F ] = [G (K/F ) : G (K/E )].

3 E is a normal extension of F if and only if G (K/E ) is a normal
subgroup of G (K/F ). If it is so, then G (E/F ) ∼= G (K/F )/G (K/E ).

4 The Galois correspondence is order-inverting: If E1 ⊂ E2, then
G (K/E1) > G (K/E2).
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Galois Theory

Proof

It remains to show that if F ⊆ E is normal, then
G (E/F ) ∼= G (K/F )/G (K/E ). Consider the restriction map σ 7→ σ|E . It
is a map from G (K/F ) to G (E/F ), since σ(E ) = E for every
σ ∈ G (K/F ). It is surjective by the Isomorphism Extension Theorem and
the fact that F ⊆ K is normal. It is obviously a homomorphism. Its kernel
is the set of automorphisms σ ∈ G (K/F ) inducing the identity
automorphism on E , i.e., it is G (K/E ).
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Illustrations of the theory

Let F be a field, and consider the field of rational functions
F (y1, y2, . . . , yn), where yi are independent variables. The symmetric
group Sn acts on this field by permuting the variables. For example, the

permutations (1, 2) transforms
y2
1+y2−y3

y1+2y2+y3
3

to
y2
2+y1−y3

y2+2y1+y3
3

.

A function is called symmetric if it is fixed under every permutation
σ ∈ Sn. For example y1 + y2 + · · ·+ yn, y21 + y22 + · · ·+ y2n , y1y2 . . . yn are
symmetric, y1 − y2 and y1 are not (if n > 1). The set of symmetric
functions is the fixed field of the described group of automorphisms of the
field F (y1, y2, . . . , yn).
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Galois Theory

Consider the polynomial
f (x) = (x − y1)(x − y2) . . . (x − yn) ∈ F (y1, y2, . . . , yn)[x ]. It is fixed under
the action of Sn, hence its coefficients are symmetric functions. We have

f (x) = xn−(y1+y2+· · ·+yn)xn−1+(y1y2+y1y3+· · · )xn−2−· · ·+(−1)ny1y2 . . . yn.

The coefficients (up to the sign) are called elementary symmetric functions
sk(y1, y2, . . . , yn) equal to the sum of all products of length k .
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Galois Theory

Consider the field F (s1, s2, . . . , sn). Since si ∈ F (y1, y2, . . . , yn), we have
F (s1, s2, . . . , sn) ⊂ F (y1, y2, . . . , yn). In fact, since each si is symmetric,
the field F (s1, s2, . . . , sn) is contained in the field of symmetric functions.
Note that yi are the roots of the polynomial
f (x) = (x − y1)(x − y2) · · · (x − yn), so F (y1, y2, . . . , yn) is a splitting
extension of F (s1, s2, . . . , sn), namely the splitting field of f (x). It follows
that F (s1, s2, . . . , sn) ⊂ F (y1, y2, . . . , yn) is a normal extension. Every
element of the Galois group of this extension is uniquely determined by its
action on the roots of f (x). Moreover, since the coefficients are fixed
under the action of the Galois group, it has to permute the roots. It
follows that the Galois group is a subgroup of the symmetric group on the
roots (this is true for every splitting field of a polynomial). But we know
that the full Sn acts by automorphisms of the extension. It shows that the
Galois group is Sn.
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Galois Theory

We have shown that the Galois group of the extension
F (s1, s2, . . . , sn) ⊂ F (y1, y2, . . . , yn) is the symmetric group acting by
permutations of the variables yi . Since the extension is normal, the fixed
field of the Galois group is F (s1, s2, . . . , sn). But the fixed field is, by
definition, the field of symmetric functions. We proved the following fact
(known long before Galois Theory)

Theorem 2

Every symmetric function is a function of elementary symmetric functions.

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra II 2020, April 14 7 / 17



Galois Theory

For example y21 + y22 + · · ·+ y2n = s21 − 2s2.
y31 + y32 + · · ·+ y3n = s31 − 3s1s2 + 3s3. The recurrent formulas relating
pk = yk1 + yk2 + · · ·+ ykn and si are called Newton’s identities:

ksk =
n∑

i=k−n
(−1)i−1sk−ipi ,

where sk is defined as 0 for k > n. In order to express a symmetric
polynomial g(y1, y2, . . . , yn) ∈ F [y1, y2, . . . , yn] as a function of si , one can
use the following algorithm: find the lexicographically highest degree
monomial ck1,k1,...,kny

k1
1 yk22 . . . yknn (find the highest power of y1, among

them the highest power of y2, etc.) Note that then k1 ≥ k2 ≥ . . . ≥ kn.
Kill it by passing to g − ck1,k2,...,kns

k1−k2
n sk2−k3n−1 · · · s

kn
1 . The new polynomial

has lower degree of the highest degree monomial. Proceed until you get 0.
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An important symmetric polynomial is the discriminant
∏

i 6=j(yi − yj)
equal to the product of squares of pairwise differences. For example, for
n = 2 it is (y1 − y2)2 = y21 − 2y1y2 + y22 = (y1 + y2)2 − 4y1y2 = s21 − 4s2.
Note that this is exactly the discriminant of the polynomial
f (x) = (x − y1)(x − y2) = x2 − (y1 + y2)x + y1y2 = x2 − s1x + s2. We will
see later that discriminants play important role in solving polynomial
equations.
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An example

Consider the splitting field over Q of x4 − 2. The four roots are ± 4
√

2,
±i 4
√

2. The splitting field is Q( 4
√

2, i). We have a tower of extensions
Q ⊂ Q( 4

√
2) ⊂ Q( 4

√
2, i). Note that since x4 − 2 is irreducible over Q, we

have [Q( 4
√

2) : Q] = 4. Since i /∈ Q( 4
√

2), and i is a root of a quadratic
polynomial over Q, we have [Q( 4

√
2, i) : Q] = 2. Consequently, the degree

of the splitting field over Q is 8 = 4× 2. A basis of the extension over Q
is {1, α, α2, α3, i , iα, iα2, iα3}, where α = 4

√
2.
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Galois Theory

An example

Since the degree is 8 and it is a normal extension, the Galois group
consists of 8 elements. These elements permute the roots
{α, iα,−α,−iα} of x4 − 2 and are uniquely determined by their action on
the roots. It follows that the Galois group is an order 8 subgroup of S4.
Let us find all of elements of the Galois group. Since x4 − 2 is irreducible,
the Galois group acts transitively on the roots (in fact, a polynomial is
irreducible over a field F if and only if the Galois group of its splitting field
over F is transitive on the roots). Note that the Galois group of the
extension Q( 4

√
2) ⊂ Q( 4

√
2, i) must be of order 2 (note that any degree 2

separable extension is normal). We know one non-trivial element of this
Galois group: complex conjugation.
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Galois Theory

An example

Every element of the Galois group is determined by its action on the basis
{1, α, α2, α3, i , iα, iα2, iα3}. If σ is an element of the Galois group, then
σ(α) ∈ {α, iα,−α,−iα} and σ(i) ∈ {i ,−i}. This gives 8 possibilities.
Therefore, all of them must be realized. Let us list them in a table and
give them names

ε ρ1 ρ2 ρ3 µ1 δ1 µ2 δ2
α 7→ α iα −α −iα α iα −α −iα
i 7→ i i i i −i −i −i −i
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ε ρ1 ρ2 ρ3 µ1 δ1 µ2 δ2
α 7→ α iα −α −iα α iα −α −iα
i 7→ i i i i −i −i −i −i

Let us see how they permute the roots.

ρ1 : α 7→ iα 7→ i · iα = −α 7→ −iα 7→ −i(iα) = α

ρ2 : α↔ −α, iα↔ −iα
ρ3 : α 7→ −iα 7→ −α 7→ iα 7→ α

µ1 : α 7→ α,−α 7→ −α, iα↔ −iα
δ1 : α 7→ iα 7→ (−i)(iα) = α, −α↔ −iα

µ2 : α↔ −α, iα 7→ (−i)(−α) = iα,−iα 7→ −(−i)(−α) = −iα
δ2 : α 7→ −iα, iα 7→ −i(−iα) = −α,−α 7→ iα,−iα 7→ −(−i)(−iα) = −α

We see that it acts as D4 on the square of roots of x4 − 2.
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Galois Theory

The group D4 has one cyclic subgroup of order 4: {ε, ρ1, ρ2, ρ3} two
subgroups isomorphic to Z2×Z2 (generated reflections with respect to the
two diagonals and generated by reflections with respect to two lines
parallel to the sides): {ε, µ1, µ2, ρ2} and {ε, δ1, δ2, ρ2}. Each of the
elements of order 2 {ρ2, µ1, µ2, δ1, δ2} generates a subgroup of order 2.
And then there is the trivial subgroup and the whole group.
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Let us find the fixed fields of the subgroups. The field corresponding to
groups of order 4 must be a quadratic extension of Q, since the index of
the subgroup is 2. We have i ,

√
2, and i

√
2 in the field. Note that

ρ1(i) = i , so i belongs to the fixed field of the cyclic group generated by
ρ1. It follows that the fixed field of the cyclic group is Q(i). We have
µ1(
√

2) = µ1(α2) = α2 and µ2(
√

2) = µ2(α2) = (−α)2 = α2, hence
Q(
√

2) is in the fixed field of {ε, µ1, µ2, ρ2}. Similarly,
δ1(i
√

2) = δ1(iα2) = −i(iα)2 = iα2 and δ2(i
√

2) = −i(−iα)2 = iα2,
hence the fixed field of {ε, δ1, δ2, ρ2} is Q(i

√
2).
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Galois Theory

It remains to find the fixed fields of groups of order two. They must be
degree 4 extensions of Q. ρ2 fixes i and α2 =

√
2, which gives the degree

4 extension Q(i ,
√

2). µ1 fixes 4
√

2, which Q( 4
√

2). µ2 fixes i 4
√

2, so it gives
Q(i 4
√

2). δ1 switches α with iα, so it leaves α + iα fixed, so it gives
Q( 4
√

2 + i 4
√

2). δ2 switches α and −iα, and we get Q( 4
√

2− i 4
√

2).
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Cyclotomic extensions

The splitting field of xn − 1 over F is the nth cyclotomic extension of F .
If α is a root of xn − 1, then using long division, we get
g(x) = xn−1

x−α = xn−1 + αxn−2 + α2xn−3 + · · ·+ αn−1x + 1, hence

g(α) = nαn−1 = nα−1. This is not equal to zero if and only if n is not
divisible by the characteristic of F . Consequently, if n is not divisible by
the characteristic, then all roots of xn − 1 are simple, and the cyclotomic
extension is separable.
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