MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 14

Main Theorem of Galois Theory

Theorem 1

Let $F \subseteq K$ be a finite normal extension. Then we have a bijection $E \mapsto G(K / E)$ between the set of intermediate fields $\{E: F \subseteq E \subseteq K\}$ and the set of subgroups of $G(K / F)$. The inverse of this bijection is the map $H \mapsto K_{H}=\{x \in K: \sigma(x)=x, \forall \sigma \in H\}$. We call these bijection the Galois correspondence. It has the following properties.
(1) The described maps are inverse to each other, i.e., $E=K_{G(K / E)}$ for every intermediate field E, and $H=G\left(K / K_{H}\right)$ for every subgroup $H \leq G(K / F)$.
(2) $[K: E]=|G(K / E)|$ and $[E: F]=[G(K / F): G(K / E)]$.
(3) E is a normal extension of F if and only if $G(K / E)$ is a normal subgroup of $G(K / F)$. If it is so, then $G(E / F) \cong G(K / F) / G(K / E)$.
(1) The Galois correspondence is order-inverting: If $E_{1} \subset E_{2}$, then $G\left(K / E_{1}\right)>G\left(K / E_{2}\right)$.

Proof

It remains to show that if $F \subseteq E$ is normal, then
$G(E / F) \cong G(K / F) / G(K / E)$. Consider the restriction map $\left.\sigma \mapsto \sigma\right|_{E}$. It is a map from $G(K / F)$ to $G(E / F)$, since $\sigma(E)=E$ for every $\sigma \in G(K / F)$. It is surjective by the Isomorphism Extension Theorem and the fact that $F \subseteq K$ is normal. It is obviously a homomorphism. Its kernel is the set of automorphisms $\sigma \in G(K / F)$ inducing the identity automorphism on E, i.e., it is $G(K / E)$.

Illustrations of the theory

Let F be a field, and consider the field of rational functions $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, where y_{i} are independent variables. The symmetric group S_{n} acts on this field by permuting the variables. For example, the permutations $(1,2)$ transforms $\frac{y_{1}^{2}+y_{2}-y_{3}}{y_{1}+2 y_{2}+y_{3}^{3}}$ to $\frac{y_{2}^{2}+y_{1}-y_{3}}{y_{2}+2 y_{1}+y_{3}^{3}}$.
A function is called symmetric if it is fixed under every permutation $\sigma \in S_{n}$. For example $y_{1}+y_{2}+\cdots+y_{n}, y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}, y_{1} y_{2} \ldots y_{n}$ are symmetric, $y_{1}-y_{2}$ and y_{1} are not (if $n>1$). The set of symmetric functions is the fixed field of the described group of automorphisms of the field $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Consider the polynomial $f(x)=\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots\left(x-y_{n}\right) \in F\left(y_{1}, y_{2}, \ldots, y_{n}\right)[x]$. It is fixed under the action of S_{n}, hence its coefficients are symmetric functions. We have
$f(x)=x^{n}-\left(y_{1}+y_{2}+\cdots+y_{n}\right) x^{n-1}+\left(y_{1} y_{2}+y_{1} y_{3}+\cdots\right) x^{n-2}-\cdots+(-1)^{n} y_{1} y_{2} .$.
The coefficients (up to the sign) are called elementary symmetric functions $s_{k}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ equal to the sum of all products of length k.

Consider the field $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Since $s_{i} \in F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, we have $F\left(s_{1}, s_{2}, \ldots, s_{n}\right) \subset F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. In fact, since each s_{i} is symmetric, the field $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is contained in the field of symmetric functions.
Note that y_{i} are the roots of the polynomial
$f(x)=\left(x-y_{1}\right)\left(x-y_{2}\right) \cdots\left(x-y_{n}\right)$, so $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a splitting extension of $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, namely the splitting field of $f(x)$. It follows that $F\left(s_{1}, s_{2}, \ldots, s_{n}\right) \subset F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a normal extension. Every element of the Galois group of this extension is uniquely determined by its action on the roots of $f(x)$. Moreover, since the coefficients are fixed under the action of the Galois group, it has to permute the roots. It follows that the Galois group is a subgroup of the symmetric group on the roots (this is true for every splitting field of a polynomial). But we know that the full S_{n} acts by automorphisms of the extension. It shows that the Galois group is S_{n}.

We have shown that the Galois group of the extension $F\left(s_{1}, s_{2}, \ldots, s_{n}\right) \subset F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is the symmetric group acting by permutations of the variables y_{i}. Since the extension is normal, the fixed field of the Galois group is $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. But the fixed field is, by definition, the field of symmetric functions. We proved the following fact (known long before Galois Theory)

Theorem 2

Every symmetric function is a function of elementary symmetric functions.

For example $y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}=s_{1}^{2}-2 s_{2}$.
$y_{1}^{3}+y_{2}^{3}+\cdots+y_{n}^{3}=s_{1}^{3}-3 s_{1} s_{2}+3 s_{3}$. The recurrent formulas relating $p_{k}=y_{1}^{k}+y_{2}^{k}+\cdots+y_{n}^{k}$ and s_{i} are called Newton's identities:

$$
k s_{k}=\sum_{i=k-n}^{n}(-1)^{i-1} s_{k-i} p_{i}
$$

where s_{k} is defined as 0 for $k>n$. In order to express a symmetric polynomial $g\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in F\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ as a function of s_{i}, one can use the following algorithm: find the lexicographically highest degree monomial $c_{k_{1}, k_{1}, \ldots, k_{n}} y_{1}^{k_{1}} y_{2}^{k_{2}} \ldots y_{n}^{k_{n}}$ (find the highest power of y_{1}, among them the highest power of y_{2}, etc.) Note that then $k_{1} \geq k_{2} \geq \ldots \geq k_{n}$. Kill it by passing to $g-c_{k_{1}, k_{2}, \ldots, k_{n}} s_{n}^{k_{1}-k_{2}} s_{n-1}^{k_{2}-k_{3}} \cdots s_{1}^{k_{n}}$. The new polynomial has lower degree of the highest degree monomial. Proceed until you get 0 .

An important symmetric polynomial is the discriminant $\prod_{i \neq j}\left(y_{i}-y_{j}\right)$ equal to the product of squares of pairwise differences. For example, for $n=2$ it is $\left(y_{1}-y_{2}\right)^{2}=y_{1}^{2}-2 y_{1} y_{2}+y_{2}^{2}=\left(y_{1}+y_{2}\right)^{2}-4 y_{1} y_{2}=s_{1}^{2}-4 s_{2}$. Note that this is exactly the discriminant of the polynomial $f(x)=\left(x-y_{1}\right)\left(x-y_{2}\right)=x^{2}-\left(y_{1}+y_{2}\right) x+y_{1} y_{2}=x^{2}-s_{1} x+s_{2}$. We will see later that discriminants play important role in solving polynomial equations.

An example

Consider the splitting field over \mathbb{Q} of $x^{4}-2$. The four roots are $\pm \sqrt[4]{2}$, $\pm i \sqrt[4]{2}$. The splitting field is $\mathbb{Q}(\sqrt[4]{2}, i)$. We have a tower of extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{Q}(\sqrt[4]{2}, i)$. Note that since $x^{4}-2$ is irreducible over \mathbb{Q}, we have $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$. Since $i \notin \mathbb{Q}(\sqrt[4]{2})$, and i is a root of a quadratic polynomial over \mathbb{Q}, we have $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=2$. Consequently, the degree of the splitting field over \mathbb{Q} is $8=4 \times 2$. A basis of the extension over \mathbb{Q} is $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, i, i \alpha, i \alpha^{2}, i \alpha^{3}\right\}$, where $\alpha=\sqrt[4]{2}$.

An example

Since the degree is 8 and it is a normal extension, the Galois group consists of 8 elements. These elements permute the roots $\{\alpha, i \alpha,-\alpha,-i \alpha\}$ of $x^{4}-2$ and are uniquely determined by their action on the roots. It follows that the Galois group is an order 8 subgroup of S_{4}. Let us find all of elements of the Galois group. Since $x^{4}-2$ is irreducible, the Galois group acts transitively on the roots (in fact, a polynomial is irreducible over a field F if and only if the Galois group of its splitting field over F is transitive on the roots). Note that the Galois group of the extension $\mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{Q}(\sqrt[4]{2}, i)$ must be of order 2 (note that any degree 2 separable extension is normal). We know one non-trivial element of this Galois group: complex conjugation.

An example

Every element of the Galois group is determined by its action on the basis $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, i, i \alpha, i \alpha^{2}, i \alpha^{3}\right\}$. If σ is an element of the Galois group, then $\sigma(\alpha) \in\{\alpha, i \alpha,-\alpha,-i \alpha\}$ and $\sigma(i) \in\{i,-i\}$. This gives 8 possibilities. Therefore, all of them must be realized. Let us list them in a table and give them names

	ϵ	ρ_{1}	ρ_{2}	ρ_{3}	μ_{1}	δ_{1}	μ_{2}	δ_{2}
$\alpha \mapsto$	α	$i \alpha$	$-\alpha$	$-i \alpha$	α	$i \alpha$	$-\alpha$	$-i \alpha$
$i \mapsto$	i	i	i	i	$-i$	$-i$	$-i$	$-i$

	ϵ	ρ_{1}	ρ_{2}	ρ_{3}	μ_{1}	δ_{1}	μ_{2}	δ_{2}
$\alpha \mapsto$	α	$i \alpha$	$-\alpha$	$-i \alpha$	α	$i \alpha$	$-\alpha$	$-i \alpha$
$i \mapsto$	i	i	i	i	$-i$	$-i$	$-i$	$-i$

Let us see how they permute the roots.

$$
\begin{gathered}
\rho_{1}: \alpha \mapsto i \alpha \mapsto i \cdot i \alpha=-\alpha \mapsto-i \alpha \mapsto-i(i \alpha)=\alpha \\
\rho_{2}: \alpha \leftrightarrow-\alpha, \quad i \alpha \leftrightarrow-i \alpha \\
\rho_{3}: \alpha \mapsto-i \alpha \mapsto-\alpha \mapsto i \alpha \mapsto \alpha \\
\mu_{1}: \alpha \mapsto \alpha,-\alpha \mapsto-\alpha, i \alpha \leftrightarrow-i \alpha \\
\delta_{1}: \alpha \mapsto i \alpha \mapsto(-i)(i \alpha)=\alpha, \quad-\alpha \leftrightarrow-i \alpha \\
\mu_{2}: \alpha \leftrightarrow-\alpha, i \alpha \mapsto(-i)(-\alpha)=i \alpha,-i \alpha \mapsto-(-i)(-\alpha)=-i \alpha
\end{gathered}
$$

$$
\delta_{2}: \alpha \mapsto-i \alpha, i \alpha \mapsto-i(-i \alpha)=-\alpha,-\alpha \mapsto i \alpha,-i \alpha \mapsto-(-i)(-i \alpha)=-\alpha
$$

We see that it acts as D_{4} on the square of roots of $x^{4}-2$.

The group D_{4} has one cyclic subgroup of order 4: $\left\{\epsilon, \rho_{1}, \rho_{2}, \rho_{3}\right\}$ two subgroups isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (generated reflections with respect to the two diagonals and generated by reflections with respect to two lines parallel to the sides): $\left\{\epsilon, \mu_{1}, \mu_{2}, \rho_{2}\right\}$ and $\left\{\epsilon, \delta_{1}, \delta_{2}, \rho_{2}\right\}$. Each of the elements of order $2\left\{\rho_{2}, \mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}\right\}$ generates a subgroup of order 2 . And then there is the trivial subgroup and the whole group.

Let us find the fixed fields of the subgroups. The field corresponding to groups of order 4 must be a quadratic extension of \mathbb{Q}, since the index of the subgroup is 2 . We have $i, \sqrt{2}$, and $i \sqrt{2}$ in the field. Note that $\rho_{1}(i)=i$, so i belongs to the fixed field of the cyclic group generated by ρ_{1}. It follows that the fixed field of the cyclic group is $\mathbb{Q}(i)$. We have $\mu_{1}(\sqrt{2})=\mu_{1}\left(\alpha^{2}\right)=\alpha^{2}$ and $\mu_{2}(\sqrt{2})=\mu_{2}\left(\alpha^{2}\right)=(-\alpha)^{2}=\alpha^{2}$, hence $\mathbb{Q}(\sqrt{2})$ is in the fixed field of $\left\{\epsilon, \mu_{1}, \mu_{2}, \rho_{2}\right\}$. Similarly, $\delta_{1}(i \sqrt{2})=\delta_{1}\left(i \alpha^{2}\right)=-i(i \alpha)^{2}=i \alpha^{2}$ and $\delta_{2}(i \sqrt{2})=-i(-i \alpha)^{2}=i \alpha^{2}$, hence the fixed field of $\left\{\epsilon, \delta_{1}, \delta_{2}, \rho_{2}\right\}$ is $\mathbb{Q}(i \sqrt{2})$.

It remains to find the fixed fields of groups of order two. They must be degree 4 extensions of $\mathbb{Q} . \rho_{2}$ fixes i and $\alpha^{2}=\sqrt{2}$, which gives the degree 4 extension $\mathbb{Q}(i, \sqrt{2})$. μ_{1} fixes $\sqrt[4]{2}$, which $\mathbb{Q}(\sqrt[4]{2})$. μ_{2} fixes $i \sqrt[4]{2}$, so it gives $\mathbb{Q}(i \sqrt[4]{2})$. δ_{1} switches α with $i \alpha$, so it leaves $\alpha+i \alpha$ fixed, so it gives $\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}) . \delta_{2}$ switches α and $-i \alpha$, and we get $\mathbb{Q}(\sqrt[4]{2}-i \sqrt[4]{2})$.

Cyclotomic extensions

The splitting field of $x^{n}-1$ over F is the nth cyclotomic extension of F. If α is a root of $x^{n}-1$, then using long division, we get $g(x)=\frac{x^{n}-1}{x-\alpha}=x^{n-1}+\alpha x^{n-2}+\alpha^{2} x^{n-3}+\cdots+\alpha^{n-1} x+1$, hence $g(\alpha)=n \alpha^{n-1}=n \alpha^{-1}$. This is not equal to zero if and only if n is not divisible by the characteristic of F. Consequently, if n is not divisible by the characteristic, then all roots of $x^{n}-1$ are simple, and the cyclotomic extension is separable.

