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Main Theorem of Galois Theory

Theorem 1

Let F C K be a finite normal extension. Then we have a bijection

E — G(K/E) between the set of intermediate fields {E : F C E C K}
and the set of subgroups of G(K/F). The inverse of this bijection is the
map H— Ky ={x € K : o(x) =x, Yo € H}. We call these bijection
the Galois correspondence. [t has the following properties.

© The described maps are inverse to each other, i.e., E = K¢k /) for
every intermediate field E, and H = G(K/Ky) for every subgroup
H < G(K/F).

@ [K:E]=|G(K/E)| and [E : F]=[G(K/F): G(K/E)].

© E is a normal extension of F if and only if G(K/E) is a normal
subgroup of G(K/F). If it is so, then G(E/F) = G(K/F)/G(K/E).

@ The Galois correspondence is order-inverting: If Ey C E,, then
G(K/E1) > G(K/E).
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Proof

It remains to show that if F C E is normal, then

G(E/F) = G(K/F)/G(K/E). Consider the restriction map o +— o|g. It
is a map from G(K/F) to G(E/F), since o(E) = E for every

o € G(K/F). It is surjective by the Isomorphism Extension Theorem and
the fact that F C K is normal. It is obviously a homomorphism. Its kernel
is the set of automorphisms o € G(K/F) inducing the identity
automorphism on E, i.e., it is G(K/E).
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Galois Theory

lllustrations of the theory

Let F be a field, and consider the field of rational functions

F(y1,¥2,...,¥n), where y; are independent variables. The symmetric
group S, acts on this field by permuting the variables. For example, the
yity2—ys Yi+yi—ys

permutations (1,2) transforms oty 0 ey

A function is called symmetric if it is fixed under every permutation
oS, Forexample yi +y2+ -+ yn, y12+y22+-~~+y3, Yiy2 ...y are
symmetric, y1 — y» and y; are not (if n > 1). The set of symmetric
functions is the fixed field of the described group of automorphisms of the

field F(y1,y2,.--,¥n)-
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Galois Theory

Consider the polynomial

f(x)=(x—y1)(x=y2)...(x—yn) € F(y1,¥2,.-.,yn)[x]. Itis fixed under
the action of S, hence its coefficients are symmetric functions. We have

f(x) = x"—(y1+y2t+- - +yn)X" T (2 tyiyateo )X 2= (1) "yays . .

The coefficients (up to the sign) are called elementary symmetric functions
sk(y1, 2, - -, yn) equal to the sum of all products of length k.
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Galois Theory

Consider the field F(s1,s,...,5). Since s; € F(y1,¥2,...,Yn), we have
F(s1,52,...,5n) C F(y1,¥2,-..,¥n). In fact, since each s; is symmetric,
the field F(s1, s, ...,5y) is contained in the field of symmetric functions.
Note that y; are the roots of the polynomial

f(x)=(Kx—y1)(x=y2) - (x—yn), so F(y1,¥2,...,yn) is a splitting
extension of F(si, s, ...,sn), namely the splitting field of f(x). It follows
that F(s1,%,...,5,) C F(y1,¥2,...,Y¥n) is a normal extension. Every
element of the Galois group of this extension is uniquely determined by its
action on the roots of f(x). Moreover, since the coefficients are fixed
under the action of the Galois group, it has to permute the roots. It
follows that the Galois group is a subgroup of the symmetric group on the
roots (this is true for every splitting field of a polynomial). But we know
that the full S, acts by automorphisms of the extension. It shows that the
Galois group is Sp,.
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Galois Theory

We have shown that the Galois group of the extension

F(s1,52,...,5n) C F(y1,¥2,-..,¥n) is the symmetric group acting by
permutations of the variables y;. Since the extension is normal, the fixed
field of the Galois group is F(s1,s2,...,Sn). But the fixed field is, by
definition, the field of symmetric functions. We proved the following fact
(known long before Galois Theory)

Theorem 2

Every symmetric function is a function of elementary symmetric functions. J
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Galois Theory

For example yl2 +y22 + - —i—y,% = 512 — 2sp.
yvi+y3+---+y3 =5} —3s15 + 3s3. The recurrent formulas relating
Pk = ylk + y2k + .-+ yk and s; are called Newton's identities:

n

kse = Y (=1 'si_ipi,

i=k—n

where s is defined as 0 for k > n. In order to express a symmetric
polynomial g(y1,¥2,...,¥n) € Fly1,y2,...,ya] as a function of s;, one can
use the following algorithm: find the lexicographically highest degree
monomial c/q7k17._,,kn)/:{<1y2k2 .. .y,’,(" (find the highest power of y;, among
them the highest power of y», etc.) Note that then k1 > ko > ... > k,.
Kill it by passing to g — ckl,kz,__vkns,’,‘l_kZ5,17‘2__1"3 . --s{‘". The new polynomial
has lower degree of the highest degree monomial. Proceed until you get 0.
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Galois Theory

An important symmetric polynomial is the discriminant H,-#j(y,- - )
equal to the product of squares of pairwise differences. For example, for
n=2itis (y1 —y2)? =y —2y1y2 +y3 = (1 + y2)* — dy1yo = 57 — 4s.
Note that this is exactly the discriminant of the polynomial
f(x)=(x—y1)(x—y2) = x> = (y1 + y2)x + y1y2 = x> — s1x + 5. We will
see later that discriminants play important role in solving polynomial
equations.
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An example

Consider the splitting field over QQ of x* — 2. The four roots are ++/2,
+iv/2. The splitting field is Q(+/2, /). We have a tower of extensions

Q C Q(v2) € Q(¥/2,1). Note that since x* — 2 is irreducible over Q, we
have [Q(v/2) : Q] = 4. Since i ¢ Q(+v/2), and i is a root of a quadratic
polynomial over Q, we have [Q(v/2,i) : Q] = 2. Consequently, the degree
of the splitting field over Q is 8 = 4 x 2. A basis of the extension over
is {1,a,02,03,i,ia,ia?,ia}, where o = v/2.
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Galois Theory

An example

Since the degree is 8 and it is a normal extension, the Galois group
consists of 8 elements. These elements permute the roots

{a, ic, —a, —ia} of x* — 2 and are uniquely determined by their action on
the roots. It follows that the Galois group is an order 8 subgroup of S4.
Let us find all of elements of the Galois group. Since x* — 2 is irreducible,
the Galois group acts transitively on the roots (in fact, a polynomial is
irreducible over a field F if and only if the Galois group of its splitting field
over F is transitive on the roots). Note that the Galois group of the
extension Q(v/2) € Q(v/2, i) must be of order 2 (note that any degree 2
separable extension is normal). We know one non-trivial element of this
Galois group: complex conjugation.
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Galois Theory

An example

Every element of the Galois group is determined by its action on the basis

{1,a,0?,

S o, ia

2

,ia3}. If o is an element of the Galois group, then

o(a) € {a,ia,—a, —ia} and o (i) € {i,—i}. This gives 8 possibilities.
Therefore, all of them must be realized. Let us list them in a table and

give them names

€

P1

P2

P3

M1

02

o =

(07

o

—Q

—io

(07

—io

I —

i

i

i
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Galois Theory

€lpi| p2 | p3s || 01| p2 | &2
a— |alia| —a| —ia| a | ia | —a | —i«
e A i i —i | =i | —=i| =i
Let us see how they permute the roots.
pria—ia—i-ia=—a— —ia— —i(ia) =«

P2l —a, o —ix
p3 i —ia —a = o= o
U1 Q= o, —a— —q, i —ia
h:a—ia— (—i)(ia) =a, —a+ —ia
2o —agia— (—i)(—a) = ia, —ia — —(—i)(—a) = —ia
02— —ia,ia— —i(—ia) = —a, —a — ia, —ia — —(—i)(—ia) = —«

We see that it acts as D4 on the square of roots of x* — 2.
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Galois Theory

The group D4 has one cyclic subgroup of order 4: {e, p1, p2, p3} two
subgroups isomorphic to Zy x Z, (generated reflections with respect to the
two diagonals and generated by reflections with respect to two lines
parallel to the sides): {e, u1, p2, p2} and {e, 1, 2, p2}. Each of the
elements of order 2 {po, p1, p2, 91,02} generates a subgroup of order 2.
And then there is the trivial subgroup and the whole group.
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Galois Theory

Let us find the fixed fields of the subgroups. The field corresponding to
groups of order 4 must be a quadratic extension of Q, since the index of
the subgroup is 2. We have 1/, V2, and iv/2 in the field. Note that

p1(i) =i, so i belongs to the fixed field of the cyclic group generated by
p1. It follows that the fixed field of the cyclic group is Q(i). We have
p(v2) = pi(a?) = o® and pa(v2) = pa(a?) = (—)® = o, hence
Q(V/2) is in the fixed field of {e, u1, s12, p2}. Similarly,

61(iV2) = 01(ia?) = —i(ia)? = ia? and 63(iv2) = —i(—ia)? = ia?
hence the fixed field of {¢,d1, 02, p2} is Q(iv/2).
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Galois Theory

It remains to find the fixed fields of groups of order two. They must be
degree 4 extensions of Q. py fixes i and a® = v/2, which gives the degree
4 extension Q(i, \@) 1 fixes v/2, which Q({‘/ﬁ) Lo fixes iv/2, so it gives
Q(iv/2). 61 switches o with i, so it leaves o + i« fixed, so it gives

Q(V/2 + iv/2). 0, switches o and —icr, and we get Q(v/2 — iv/2).
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Galois Theory

Cyclotomic extensions

The splitting field of x” — 1 over F is the nth cyclotomic extension of F.
If ais a root of x" — 1, then using long division, we get

gx) =2t =x" 1+ ax" 2+ a?x" 3 4. 4" Ix + 1, hence

g(a) = na"~1 = na~1. This is not equal to zero if and only if n is not
divisible by the characteristic of F. Consequently, if n is not divisible by
the characteristic, then all roots of x” — 1 are simple, and the cyclotomic
extension is separable.
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