MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 16

	ϵ	ρ_{1}	ρ_{2}	ρ_{3}	μ_{1}	δ_{1}	μ_{2}	δ_{2}
$\alpha \mapsto$	α	$i \alpha$	$-\alpha$	$-i \alpha$	α	$i \alpha$	$-\alpha$	$-i \alpha$
$i \mapsto$	i	i	i	i	$-i$	$-i$	$-i$	$-i$

Let us see how they permute the roots.

$$
\begin{gathered}
\rho_{1}: \alpha \mapsto i \alpha \mapsto i \cdot i \alpha=-\alpha \mapsto-i \alpha \mapsto-i(i \alpha)=\alpha \\
\rho_{2}: \alpha \leftrightarrow-\alpha, \quad i \alpha \leftrightarrow-i \alpha \\
\rho_{3}: \alpha \mapsto-i \alpha \mapsto-\alpha \mapsto i \alpha \mapsto \alpha \\
\mu_{1}: \alpha \mapsto \alpha,-\alpha \mapsto-\alpha, i \alpha \leftrightarrow-i \alpha \\
\delta_{1}: \alpha \mapsto i \alpha \mapsto(-i)(i \alpha)=\alpha, \quad-\alpha \leftrightarrow-i \alpha \\
\mu_{2}: \alpha \leftrightarrow-\alpha, i \alpha \mapsto(-i)(-\alpha)=i \alpha,-i \alpha \mapsto-(-i)(-\alpha)=-i \alpha
\end{gathered}
$$

$$
\delta_{2}: \alpha \mapsto-i \alpha, i \alpha \mapsto-i(-i \alpha)=-\alpha,-\alpha \mapsto i \alpha,-i \alpha \mapsto-(-i)(-i \alpha)=-\alpha
$$

We see that it acts as D_{4} on the square of roots of $x^{4}-2$.

The group D_{4} has one cyclic subgroup of order 4: $\left\{\epsilon, \rho_{1}, \rho_{2}, \rho_{3}\right\}$ two subgroups isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (generated reflections with respect to the two diagonals and generated by reflections with respect to two lines parallel to the sides): $\left\{\epsilon, \mu_{1}, \mu_{2}, \rho_{2}\right\}$ and $\left\{\epsilon, \delta_{1}, \delta_{2}, \rho_{2}\right\}$. Each of the elements of order $2\left\{\rho_{2}, \mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}\right\}$ generates a subgroup of order 2 . And then there is the trivial subgroup and the whole group.

Let us find the fixed fields of the subgroups. The field corresponding to groups of order 4 must be a quadratic extension of \mathbb{Q}, since the index of the subgroup is 2 . We have $i, \sqrt{2}$, and $i \sqrt{2}$ in the field. Note that $\rho_{1}(i)=i$, so i belongs to the fixed field of the cyclic group generated by ρ_{1}. It follows that the fixed field of the cyclic group is $\mathbb{Q}(i)$. We have $\mu_{1}(\sqrt{2})=\mu_{1}\left(\alpha^{2}\right)=\alpha^{2}$ and $\mu_{2}(\sqrt{2})=\mu_{2}\left(\alpha^{2}\right)=(-\alpha)^{2}=\alpha^{2}$, hence $\mathbb{Q}(\sqrt{2})$ is in the fixed field of $\left\{\epsilon, \mu_{1}, \mu_{2}, \rho_{2}\right\}$. Similarly, $\delta_{1}(i \sqrt{2})=\delta_{1}\left(i \alpha^{2}\right)=-i(i \alpha)^{2}=i \alpha^{2}$ and $\delta_{2}(i \sqrt{2})=-i(-i \alpha)^{2}=i \alpha^{2}$, hence the fixed field of $\left\{\epsilon, \delta_{1}, \delta_{2}, \rho_{2}\right\}$ is $\mathbb{Q}(i \sqrt{2})$.

It remains to find the fixed fields of groups of order two. They must be degree 4 extensions of \mathbb{Q}. ρ_{2} fixes i and $\alpha^{2}=\sqrt{2}$, which gives the degree 4 extension $\mathbb{Q}(i, \sqrt{2})$. μ_{1} fixes $\sqrt[4]{2}$, which $\mathbb{Q}(\sqrt[4]{2})$. μ_{2} fixes $i \sqrt[4]{2}$, so it gives $\mathbb{Q}(i \sqrt[4]{2}) . \delta_{1}$ switches α with $i \alpha$, so it leaves $\alpha+i \alpha$ fixed, so it gives $\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}) . \delta_{2}$ switches α and $-i \alpha$, and we get $\mathbb{Q}(\sqrt[4]{2}-i \sqrt[4]{2})$.

Cyclotomic extensions

The splitting field of $x^{n}-1$ over F is the nth cyclotomic extension of F. If α is a root of $x^{n}-1$, then using long division, we get $g(x)=\frac{x^{n}-1}{x-\alpha}=x^{n-1}+\alpha x^{n-2}+\alpha^{2} x^{n-3}+\cdots+\alpha^{n-2} x+\alpha^{n-1}$, hence $g(\alpha)=n \alpha^{n-1}=n \alpha^{-1}$. This is not equal to zero if and only if n is not divisible by the characteristic of F. Consequently, if n is not divisible by the characteristic, then all roots of $x^{n}-1$ are simple, and the cyclotomic extension is separable.

The set of roots α of $x^{n}-1$ is a group with respect to multiplication. Since it is a subgroup of the multiplicative group of a field, it is cyclic. Hence it is isomorphic to \mathbb{Z}_{n}. Recall that a residue k modulo n is a generator of \mathbb{Z}_{n} if and only if n and k are coprime. It follows that the group of roots of $x^{n}-1$ has $\phi(n)$ generating elements. They are called the primitive roots. Since the property of being primitive is purely algebraic, any automorphism of the cyclotomic field must map a primitive root to a primitive root. It follows that the product of all $(x-\alpha)$ for primitive roots α is a polynomial invariant under the action of the automorphism group of the cyclotomic extension, hence all its coefficients belong to the simple subfield of F (i.e., to \mathbb{Z}_{p} for fields of characteristic p and to \mathbb{Q} for fields of 0 characteristic). We denote this polynomial by $\Phi_{n}(x)$. We know that $\operatorname{deg} \Phi_{n}=\phi(n)$.

Since a root is primitive if and only if it does not generate a smaller subgroup, it is primitive if and only if it is not a root of $x^{k}-1$ for some $k<n$. It follows that

$$
\Phi_{n}(x)=\frac{x^{n}-1}{\prod_{d \mid n, d<n} \Phi_{d}(x)}
$$

This gives another proof that $\Phi_{n}(x) \in \mathbb{Z}[x]$. For example, we have $\Phi_{1}(x)=x-1, \Phi_{2}(x)=\frac{x^{2}-1}{x-1}=x+1, \Phi_{3}(x)=\frac{x^{3}-1}{x-1}=x^{2}+x+1$, $\Phi_{4}(x)=\frac{x^{4}-1}{x^{2}-1}=x^{2}+1, \Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1$ if p is prime, $\Phi_{6}(x)=\frac{x^{6}-1}{\left(x^{3}-1\right)(x+1)}=x^{2}-x+1$. They are called cyclotomic polynomials.

