MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 21

Let us prove the $\Phi_{n}(x)$ is irreducible over \mathbb{Q}. We will assume without proof the Gauss Lemma, which tells that irreducibility of polynomials over \mathbb{Z} is the same as over \mathbb{Q}. Suppose that ζ is a primitive root of $x^{n}-1$. Then ζ^{k} is a root of $x^{n}-1$, and if k and n are coprime, then ζ^{k} is a primitive root. Let $f(x)$ be the irreducible monic polynomial of ζ over \mathbb{Q}. It has integer coefficients by Gauss Lemma. Then $f(x) g(x)=\Phi_{n}(x)$, where g and f are coprime. Let p be a prime not dividing n. Then $x-\zeta^{p}$ also divides $\Phi_{n}(z)$. We want to prove that $x-\zeta^{p}$ divides $f(x)$. Suppose that it is not true. Then $x-\zeta^{p}$ divides $g(x)$, i.e., ζ^{p} is a root of $g(x)$. It follows that ζ is a root of $g\left(x^{p}\right)$. But $f(x)$ is the minimal polynomial of ζ, so $f(x) \mid g\left(x^{p}\right)$. Let us reduce everything modulo p, i.e., look at the coefficients of the polynomials as at elements of the field \mathbb{Z}_{p}. Then we still have that $f(x) \mid g\left(x^{p}\right)$ in $\mathbb{Z}_{p}[x]$. But we have $g\left(x^{p}\right)=(g(x))^{p}$ over \mathbb{Z}_{p}, so $f(x) \mid(g(x))^{p}$. Hence $f(x)$ and $g(x)$ have a common divisor. This implies that $x^{n}-1$ has a multiple root in the algebraic extension of \mathbb{Z}_{p}. But we have shown before that $x^{n}-1$ is separable over \mathbb{Z}_{p} if p does not divide n.

We proved that if a prime p does not divide n, and ζ is a primitive root of $x^{n}-1$, then ζ and ζ^{p} belong to the same irreducible factor of $\Phi_{n}(x)$. But every root of $\Phi_{n}(x)$ is of the form ζ^{m} for some m coprime with n. We can write then $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{l}^{a_{1}}$, where p_{i} are primes. Since m and n are coprime, the primes p_{i} do not divide n, and step by step we prove that ζ^{m} divides the same irreducible factor of $\Phi_{n}(x)$. This shows that $\Phi_{n}(x)$ has only one irreducible factor.

We have shown that $\Phi_{n}(x)$ is irreducible over \mathbb{Q}. Fix a primitive root ζ. Recall that the nth cyclotomic extension is equal to the splitting field of $x^{n}-1$ and is equal to $\mathbb{Q}(\zeta)$, since every root of $x^{n}-1$ is of the form ζ^{m}. Every element σ of $G(\mathbb{Q}(\zeta) / \mathbb{Q})$ is uniquely determined by its value $\sigma(\zeta)$. We know that $\sigma(\zeta)$ must generate the multiplicative group of roots of $x^{n}-1$, i.e., that $\sigma(\zeta)$ is a root of $\Phi_{n}(x)$ and we have $\sigma(\zeta)=\zeta^{m}$ for some m coprime with n. Then for every root ζ^{k} we have $\sigma\left(\zeta^{k}\right)=\sigma(\zeta)^{k}=\zeta^{m k}$. If $\sigma\left(\zeta^{k}\right)=\zeta^{m_{1} k}$ and $\tau\left(\zeta^{k}\right)=\zeta^{m_{2} k}$, then $\sigma \tau\left(\zeta^{k}\right)=\zeta^{m_{1} m_{2} k}$. Conversely, for every primitive root ζ^{m} (where m and n are coprime) there exists an element of the Galois group such that $\zeta \mapsto \zeta^{m}$, since $\Phi_{n}(x)$ is irreducible.

It follows that the Galois group of the cyclotomic extension is isomorphic to the multiplicative group of the ring \mathbb{Z}_{n}. In particular, it is an abelian group of order $\phi(n)$. For example, if $n=p$ is prime, then it is isomorphic to the multiplicative group of the field \mathbb{Z}_{p}, hence cyclic of order $p-1$. For some non-prime values of n it is not cyclic.

Constructing a regular n-gon by compass and a straightedge is equivalent to constructing a tower of quadratic extensions $\mathbb{Q} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{m}$ such that F_{m} contains all complex roots of $x^{n}-1$. If such an extension exists, then $\left[F_{m}: \mathbb{Q}\right]=2^{k}$, and if K is the nth cyclotomic field, then $\mathbb{Q} \subseteq K \subseteq F_{m}$, so $[K: \mathbb{Q}]$ divides 2^{k}, hence $[K: \mathbb{Q}]$ is a power of two. But the degree of the cyclotomic extension is equal to $\phi(n)=\operatorname{deg} \Phi_{n}(x)$. The formula for $\phi(n)$ is

$$
\phi\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}\right)=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \cdots p_{k}^{a_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)
$$

We see that it is a power of 2 if and only if all odd primes p_{i} are raised to power $a_{i}=1$ and are of the form $2^{m}+1$. For any such a prime m must have no odd divisor, i.e., be a power of two. Hence all odd prime divisors of n must be Fermat primes: primes of the form $2^{2^{k}}+1$. For example, such are $2+1,4+1,16+1, \ldots$. Fermat conjectured that all numbers $2^{2^{k}}+1$ are primes. In fact, the only known Fermat primes are $2+1,2^{2}+1,2^{2^{2}}+1,2^{2^{3}}+1,2^{2^{4}}+1$. For example, $2^{2^{5}}+1=641 \times 6700417$.

Conversely, suppose that $\phi(n)$ is a power of 2. Then the Galois group $G(K / \mathbb{Q})$ of the nth cyclotomic extension over \mathbb{Q} is of order $\phi(n)$, hence a power of two. Every group of order 2^{m} has a subgroup of index 2 (one of Sylow's theorems). The corresponding intermediate field E will satisfy $[E: \mathbb{Q}]=2$, the extension $[K: E]$ is normal with the Galois group of order 2^{m-1}. Continuing like this we will get a sequence of degree two extension all the way from \mathbb{Q} to the cyclotomic field. This will show that the regular n-gon is constructible.

Fundamental Theorem of Algebra

Theorem 1
\mathbb{C} is algebraically closed.
We want to prove that every polynomial in $\mathbb{C}[x]$ has a root. It is equivalent to proving that \mathbb{C} has no non-trivial finite extensions. Suppose that, on the contrary, $\mathbb{C} \subset K$ is a finite extension. Then $\mathbb{R} \subset K$ is also a finite extension. We can find a finite normal extension $\mathbb{R} \subset E$ such that $K \subset E$. (Take the irreducible polynomials of the generators of K over \mathbb{R}, and then adjoin all their roots.) Consider the Galois group $G=G(E / \mathbb{R})$.

Proof of the Fundamental Theorem of Algebra

Consider the Sylow 2-subgroup $H_{1} \leq G$. Then [$G: H_{1}$] is odd. Let $\mathbb{R} \subset F_{1} \subset E$ be the corresponding field. We have then $\left[F_{1}: \mathbb{R}\right]=\left[G: H_{1}\right]$. Hence for any $\alpha \in F_{1}$ the degree of the irreducible polynomial $f(x) \in \mathbb{R}[x]$ of α is odd. But every polynomial over \mathbb{R} of odd degree has a root (since its signs at ∞ and $-\infty$ are opposite). Therefore, $F_{1}=\mathbb{R}$, i.e., $H_{1}=\{1\}$ and the Galois group G has order 2^{n} for some n. Consequently, the subgroup $G(E / \mathbb{C})$ of $G(E / \mathbb{R})$ is of order 2^{n-1}. By one of the Sylow Theorems, $G(E / \mathbb{C})$ has a subgroup H_{2} of order 2^{n-2}. The corresponding field $\mathbb{C} \subset F_{2} \subset E$ will have $\left[F_{2}: \mathbb{C}\right]=\left[G: H_{2}\right]=2$. but every quadratic polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C}. Contradiction.

