
MATH 416, Modern Algebra II

Volodymyr Nekrashevych

2020, April 21

V. Nekrashevych (Texas A&M) MATH 416, Modern Algebra II 2020, April 21 1 / 9



Galois Theory

Let us prove the Φn(x) is irreducible over Q. We will assume without
proof the Gauss Lemma, which tells that irreducibility of polynomials over
Z is the same as over Q. Suppose that ζ is a primitive root of xn − 1.
Then ζk is a root of xn − 1, and if k and n are coprime, then ζk is a
primitive root. Let f (x) be the irreducible monic polynomial of ζ over Q.
It has integer coefficients by Gauss Lemma. Then f (x)g(x) = Φn(x),
where g and f are coprime. Let p be a prime not dividing n. Then x − ζp
also divides Φn(z). We want to prove that x − ζp divides f (x). Suppose
that it is not true. Then x − ζp divides g(x), i.e., ζp is a root of g(x). It
follows that ζ is a root of g(xp). But f (x) is the minimal polynomial of ζ,
so f (x)|g(xp).Let us reduce everything modulo p, i.e., look at the
coefficients of the polynomials as at elements of the field Zp. Then we still
have that f (x)|g(xp) in Zp[x ]. But we have g(xp) = (g(x))p over Zp, so
f (x)|(g(x))p. Hence f (x) and g(x) have a common divisor. This implies
that xn − 1 has a multiple root in the algebraic extension of Zp. But we
have shown before that xn − 1 is separable over Zp if p does not divide n.
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Galois Theory

We proved that if a prime p does not divide n, and ζ is a primitive root of
xn − 1, then ζ and ζp belong to the same irreducible factor of Φn(x). But
every root of Φn(x) is of the form ζm for some m coprime with n. We can
write then m = pa11 pa22 · · · p

al
l , where pi are primes. Since m and n are

coprime, the primes pi do not divide n, and step by step we prove that ζm

divides the same irreducible factor of Φn(x). This shows that Φn(x) has
only one irreducible factor.
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Galois Theory

We have shown that Φn(x) is irreducible over Q. Fix a primitive root ζ.
Recall that the nth cyclotomic extension is equal to the splitting field of
xn − 1 and is equal to Q(ζ), since every root of xn − 1 is of the form ζm.
Every element σ of G (Q(ζ)/Q) is uniquely determined by its value σ(ζ).
We know that σ(ζ) must generate the multiplicative group of roots of
xn − 1, i.e., that σ(ζ) is a root of Φn(x) and we have σ(ζ) = ζm for some
m coprime with n. Then for every root ζk we have σ(ζk) = σ(ζ)k = ζmk .
If σ(ζk) = ζm1k and τ(ζk) = ζm2k , then στ(ζk) = ζm1m2k . Conversely, for
every primitive root ζm (where m and n are coprime) there exists an
element of the Galois group such that ζ 7→ ζm, since Φn(x) is irreducible.
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Galois Theory

It follows that the Galois group of the cyclotomic extension is isomorphic
to the multiplicative group of the ring Zn. In particular, it is an abelian
group of order φ(n). For example, if n = p is prime, then it is isomorphic
to the multiplicative group of the field Zp, hence cyclic of order p − 1. For
some non-prime values of n it is not cyclic.
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Galois Theory

Constructing a regular n-gon by compass and a straightedge is equivalent
to constructing a tower of quadratic extensions Q ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm
such that Fm contains all complex roots of xn − 1. If such an extension
exists, then [Fm : Q] = 2k , and if K is the nth cyclotomic field, then
Q ⊆ K ⊆ Fm, so [K : Q] divides 2k , hence [K : Q] is a power of two. But
the degree of the cyclotomic extension is equal to φ(n) = deg Φn(x). The
formula for φ(n) is

φ(pa11 pa22 · · · p
ak
k ) = pa1−1

1 pa2−1
2 · · · pak−1

k (p1 − 1)(p2 − 1) · · · (pk − 1).

We see that it is a power of 2 if and only if all odd primes pi are raised to
power ai = 1 and are of the form 2m + 1. For any such a prime m must
have no odd divisor, i.e., be a power of two. Hence all odd prime divisors
of n must be Fermat primes: primes of the form 22

k
+ 1. For example,

such are 2 + 1, 4 + 1, 16 + 1, . . .. Fermat conjectured that all numbers
22

k
+ 1 are primes. In fact, the only known Fermat primes are

2 + 1, 22 + 1, 22
2

+ 1, 22
3

+ 1, 22
4

+ 1. For example,
22

5
+ 1 = 641× 6700417.
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Galois Theory

Conversely, suppose that φ(n) is a power of 2. Then the Galois group
G (K/Q) of the nth cyclotomic extension over Q is of order φ(n), hence a
power of two. Every group of order 2m has a subgroup of index 2 (one of
Sylow’s theorems). The corresponding intermediate field E will satisfy
[E : Q] = 2, the extension [K : E ] is normal with the Galois group of order
2m−1. Continuing like this we will get a sequence of degree two extension
all the way from Q to the cyclotomic field. This will show that the regular
n-gon is constructible.
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Galois Theory

Fundamental Theorem of Algebra

Theorem 1

C is algebraically closed.

We want to prove that every polynomial in C[x ] has a root. It is
equivalent to proving that C has no non-trivial finite extensions. Suppose
that, on the contrary, C ⊂ K is a finite extension. Then R ⊂ K is also a
finite extension. We can find a finite normal extension R ⊂ E such that
K ⊂ E . (Take the irreducible polynomials of the generators of K over R,
and then adjoin all their roots.) Consider the Galois group G = G (E/R).
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Galois Theory

Proof of the Fundamental Theorem of Algebra

Consider the Sylow 2-subgroup H1 ≤ G . Then [G : H1] is odd. Let
R ⊂ F1 ⊂ E be the corresponding field. We have then [F1 : R] = [G : H1].
Hence for any α ∈ F1 the degree of the irreducible polynomial f (x) ∈ R[x ]
of α is odd. But every polynomial over R of odd degree has a root (since
its signs at ∞ and −∞ are opposite). Therefore, F1 = R, i.e., H1 = {1}
and the Galois group G has order 2n for some n. Consequently, the
subgroup G (E/C) of G (E/R) is of order 2n−1. By one of the Sylow
Theorems, G (E/C) has a subgroup H2 of order 2n−2. The corresponding
field C ⊂ F2 ⊂ E will have [F2 : C] = [G : H2] = 2. but every quadratic
polynomial in C[x ] has a root in C. Contradiction.
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