
Linear Systems of ODE

MATH 469, Texas A&M University

Spring 2020



Overview

Recall that in our lecture on compartment models, we wrote down
the ODE system

dA

dt
= rA

y(t)

VH(t)
; A(0) = 0

dy

dt
= rI (t)

M − y(t)− A(t)

VB(t)
− (rO(t) + rA)

y(t)

VH(t)
; y(0) = 0.

We can express this system in vector form by setting
~y =

(y1
y2

)
=
(A
y

)
, and writing

d~y

dt
= M(t)~y + ~g(t); ~y(0) =

(
0
0

)
,

where

M(t) =

(
0 rA

VH(t)

− rI (t)
VB(t)

− rI (t)
VB(t)

− rO(t)+rA
VH(t)

)
; ~g(t) =

(
0

rI (t)M
VB(t)

)
.



Overview

Generally, a system of the form

d~y

dt
= M(t)~y + ~g(t); ~y(0) = ~y0,

for some matrix function M(t) and some vector function ~g(t) is
referred to as a linear system of ODE. If ~g(t) is identically 0, we
refer to the system as homogeneous, and otherwise we refer to it as
inhomogeneous.



Example: Better Protection of the Ozone Layer

This example is taken from the article, “Better protection of the
ozone layer,” by M. K. W. Ko, N-D. Sze, and M. J. Prather, in
Nature 367 (1994) 505-508.

One element known to contribute to the depletion of ozone (O3) in
the stratosphere (10 km - 50 km above the earth’s surface) is
chlorine (Cl). (Other big culprits, which won’t have a role here,
include bromine (Br), hydroxyl radicals (OH−), and nitric oxide
(NO).)

Chlorine often gets into the atmosphere via halocarbons, which are
compounds in which one or more carbon atoms are linked with one
or more halogen atoms (i.e., fluorine (F ), chlorine, bromine (Br),
iodine (I ), and astatine (At); Group VIIA in the periodic table).
Halocarbons are widely used as solvents, pesticides, refigerants,
adhesives, sealants, electrically insulated coatings, and so on.



Example: Better Protection of the Ozone Layer

Once a halocarbon gets into the stratosphere, it can be catalyzed
by sunlight to break down and release a halogen. For example, the
authors are interested in chlorofluorocarbons (CFC ’s), and one such
molecule is trichlorofluoromethane (CCl3F ). In the presence of
sunlight, CCl3F breaks down via the reaction

CCl3F −→ CCl2F + Cl .

Once free chlorine is in the stratosphere, it interacts with ozone via
the reaction

Cl + O3 −→ClO + O2

ClO + O3 −→Cl + 2O2.



Example: Better Protection of the Ozone Layer

The authors focus on tracking the amount of free chlorine in the
stratosphere as a function of time.

The basic dynamics are as follows:
I CFC gets into the troposphere (0 km - 10 km above the

earth’s surface) and transfers back and forth into the
stratosphere.

I CFC in the stratosphere breaks down, releasing free chlorine
into the stratosphere.

The authors use the following variables, measured in kilograms:

CT = amount of Cl in CFC in the troposphere
CS = amount of Cl in CFC in the stratosphere
C = amount of free chlorine in the stratosphere.



Example: Better Protection of the Ozone Layer

The system is as follows:

dCT

dt
= − 1

LT
CT +

1
τ
CS −

f

τ
CT

dCS

dt
= − 1

LS
CS −

1
τ
CS +

f

τ
CT

dC

dt
= +

1
LS

CS −
1
τ
C .

The term − 1
LT

CT corresponds with the breakdown of CFC in the
troposphere. Similarly as with our discussion of death rates and life
expectancies for difference equations, LT denotes the average
lifetime of a kilogram of CT .

The term 1
τ CS corresponds with transfer of CFC from the

stratosphere to the troposphere.



Example: Better Protection of the Ozone Layer

The system is as follows:

dCT

dt
= − 1

LT
CT +

1
τ
CS −

f

τ
CT

dCS

dt
= − 1

LS
CS −

1
τ
CS +

f

τ
CT

dC

dt
= +

1
LS

CS −
1
τ
C .

The term − f
τ CT corresponds with transfer of CFC from the

troposphere to the stratosphere. Here, f < 1, reflecting that CFC
is more likely to diffuse downward.

The term − 1
LS
CS corresponds with breakdown of CFC in the

stratosphere, and LS denotes the average lifetime of a kilogram of
CS . In general, LS is much smaller than LT . I.e., breakdown is
much faster in the stratosphere than in the troposphere.



Example: Better Protection of the Ozone Layer

The system is as follows:

dCT

dt
= − 1

LT
CT +

1
τ
CS −

f

τ
CT

dCS

dt
= − 1

LS
CS −

1
τ
CS +

f

τ
CT

dC

dt
= +

1
LS

CS −
1
τ
C .

The term − 1
τ C corresponds with the transport of chlorine from the

stratosphere to the troposphere.

We can write this system in vector form with

~y =

 y1
y2
y3

 =

 CT

CS

C

 .



Example: Better Protection of the Ozone Layer

We get

d~y

dt
= A~y ; A =

 −
1
LT
− f

τ
1
τ 0

f
τ − 1

LS
− 1

τ 0
0 1

LS
− 1

τ

 .

Some parameter values given in the article are as follows:

LT = 1000 years
LS = 5 years
τ = 3 years
f = .1765.



Solving Linear Systems with Constant Coefficients

For a fixed n × n matrix A, we consider the linear system of ODE

d~y

dt
= A~y ; ~y(0) = ~y0.

We begin by looking for solutions of the form

~y(t) = eλt~v ,

where λ is a constant value and ~v is a contant vector. If we
substitute ~y(t) into the equation, we find

λeλt~v = eλtA~v .

Dividing both sides by eλt , we obtain the eigenvalue problem

A~v = λ~v .



Solving Linear Systems with Constant Coefficients

Let {λj}nj=1 denote the eigenvalues of A, and suppose for simplicity
that these values are all distinct. Then there is a corresponding
collection of n linearly independent eigenvectors {~vj}nj=1.

The general solution for our equation is

~y(t) =
n∑

j=1

cje
λj t~vj ,

where the constants {cj}nj=1 can be determined from ~y0. I.e., we
have the relation

~y0 = ~y(0) =
n∑

j=1

cj~vj ,

and this is a system of n equations for the n constants.



Solving Linear Systems with Constant Coefficients

For the constants, we obtained precisely the same system while
solving linear systems of difference equations, and we noticed that
if we write

~c =


c1
c2
...
cn

 , V =
(
~v1 ~v2 . . . ~vn

)
,

then we can express our equation for the constants {cj}nj=1 as

V ~c = ~y0 =⇒ ~c = V−1~y0.

Here, we mean that ~v1 is the first column of V , ~v2 is the second
column of V , and so on.



Solving Linear Systems with Constant Coefficients

Example. Let’s solve the system

dy1

dt
= y1 + y2; y1(0) = 1

dy2

dt
= 4y1 + y2; y2(0) = −1.

First, if we express this system in the matrix form

d~y

dt
= A~y ; ~y(0) =

(
1
−1

)
,

we see that

A =

(
1 1
4 1

)
.

We begin by computing the eigenvalues of A.



Solving Linear Systems with Constant Coefficients

We compute

det
(

1− λ 1
4 1− λ

)
=(1− λ)2 − 4 = 1− 2λ+ λ2 − 4

=λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0.

We see that the eigenvalues are λ1 = −1, λ2 = 3.

For the eigenvectors, we’ll start with λ1 = −1, and we’ll write the
corresponding eigenvector as ~v1 =

(v11
v21

)
. We must have the relation(

2 1
4 2

)(
v11

v21

)
=

(
0
0

)
,

from which we see that

2v11 + v21 = 0.

(After dividing by 2, the second equation would be the same thing.)



Solving Linear Systems with Constant Coefficients

We have the freedom to choose one component of ~v1, and we take
v11 = 1, which implies v21 = −2. I.e.,

~v1 =

(
1
−2

)
.

Likewise, for λ2 = 3, we’ll write the corresponding eigenvector as
~v2 =

(v12
v22

)
. In this case, we must have the relation(

−2 1
4 −2

)(
v12

v22

)
=

(
0
0

)
,

from which we see that

−2v12 + v22 = 0.

We choose v12 = 1, and this implies v22 = 2, so that

~v2 =

(
1
2

)
.



Solving Linear Systems with Constant Coefficients

We’ve now identified the eigenvalues and eigenvectors, so we can
write the general solution to this equation as

~y(t) = c1e
−t

(
1
−2

)
+ c2e

3t
(
1
2

)
.

Last, to find the constants c1 and c2, we set t = 0 to get(
1
−1

)
= c1

(
1
−2

)
+ c2

(
1
2

)
,

which we can write out as

1 = c1 + c2

−1 = − 2c1 + 2c2.

If we multiply the first equation by 2 and subtract the second
equation from the result, we see that

3 = 4c1 =⇒ c1 =
3
4

=⇒ c2 =
1
4
.



Solving Linear Systems with Constant Coefficients

We conclude that

~y(t) =
3
4
e−t

(
1
−2

)
+

1
4
e3t
(
1
2

)
.

In component form, the solution is

y1(t) =
3
4
e−t +

1
4
e3t

y2(t) = −
3
2
e−t +

1
2
e3t .


