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Overview

This application of single first-order autonomous ODE is adapted
from the article “Thresholds in Development,” by J. Lewis, J. M. W.
Slack, and L. Wolpert in J. Theoretical Biology 65 (1977) 579-590.

During the early stages of development, an embryo’s cells (such as
stem cells) all appear to be the same, so the question arises: how
do these cells ultimately differentiate to become blood cells, skin
cells, neurons, etc.?

Laboratory studies suggest that signaling molecules called
morphogens diffuse through the embryo at some stage of
development, and cell type is determined by the concentration of
morphogens at the cell location during this stage.



Overview

In the referenced article, the authors focus on two primary
questions associated with this process:

1. The selection question. How can small changes in morphogen
concentration lead to large changes in cell development? E.g., how
can a small change in morphogen communicate to a cell that it
should become a skin cell rather than a neuron?

2. The memory question. Once the morphogens have run their
course, how do the cells remember, during subsequent
development, what they’re supposed to become?

In order to answer these questions, the authors focus on the
activation of a particular gene G by a morphogen S (S for signaling
molecule). They let g(t) denote the “gene product,” by which they
mean a variable that measures the level of activation induced in the
gene G by the morphogen S at time t. I.e., the larger g(t) is, the
more likely it is that gene G will be activated.



The Model

As a model for the dynamics of g(t), the authors use

dg

dt
= k1S +

k2g
2

k3 + g2 − k4g .

Here, S denotes the concentration of morphogens at the cell
location, and the constants k1, k2, k3, and k4 are all positive. This
model is based on the following phenomenological assumptions:

1. The gene product increases at a rate proportional to the
concentration of morphogens S .

2. In the absence of morphogens, the gene product declines if it is
either below a lower threshold or above an upper threshold. In the
intermediate region, it increases.



The Model

To better understand Item 2, notice that we can express the latter
two terms in the model as

g
( k2g

k3 + g2 − k4

)
.

Since k4 > 0, we see that this quantity is negative for g sufficiently
small or for g sufficiently large. (We’ll be explicit about this in our
stability analysis).

Using this model, the authors were able to address their questions
by considering the nature of equilibrium points.



Equilibrium Points and Stability

Recall that the model is

dg

dt
= k1S +

k2g
2

k3 + g2 − k4g ,

For notational convenience, let’s set

f (g ;S) := k1S +
k2g

2

k3 + g2 − k4g .

Since k3 + g2 > 0, the function

F (g ;S) = (k3 + g2)f (g ; S)

will have precisely the same zeros and signs as f (g ;S). This means
that we can use F (g ;S) (rather than f (g ;S)) both to determine
our equilibrium points and to analyze their stability.



Equilibrium Points and Stability

For the equilibrium points, we set

0 = F (ĝ ;S) = (k3 + ĝ2)k1S + k2ĝ
2 − (k3 + ĝ2)k4ĝ .

This is a cubic equation for ĝ ,

−k4ĝ
3 + (k1S + k2)ĝ

2 − k3k4ĝ + k1k3S = 0.

We particularly want to understand what happens as S varies. Let’s
start with S = 0, in which case we have

−k4ĝ
3 + k2ĝ

2 − k3k4ĝ = 0 =⇒ −ĝ(k4ĝ
2 − k2ĝ + k3k4) = 0.

We see that ĝ = 0 is a fixed point, and there are two more fixed
points

ĝ± =
k2 ±

√
k2
2 − 4k3k2

4

2k4
.



Equilibrium Points and Stability

The interesting case is when the discriminant k2
2 − 4k3k

2
4 is

positive, so that there are three fixed points. Since

k2 >
√
k2
2 − 4k3k2

4 ,

we can order these as
0 < ĝ− < ĝ+.

We can sketch this as follows:



Equilibrium Points and Stability

As S increases, this graph lifts upward. On the next slide, plots are
given for S1 > 0 and S2 > S1, with S2 taken large enough so that
there is only one fixed point.

The gene product g(t) is initially small, and since ĝ1
0 is

asymptotically stable, we expect that if S is small, then g(t) will
remain small.

But once S gets large enough so that the lower two equilibrium
points are no longer there (e.g., for S = S2), then since ĝ2

+ is
asymptotically stable, we expect that g(t) will increase to this
significantly larger value. In this case, the gene will express itself.
This answers the expression question.

Now suppose g(t) is near ĝ2
+, and the value of S decreases back

near 0. Since ĝ+ is asymptotically stable, we expect g(t) to remain
near ĝ+, in which case the gene will continue being expressed. This
answers the memory question.




