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The Lax-Milgram Theorem

Let H denote a real Hilbert space with inner product (·, ·) and norm
‖ · ‖ = (·, ·)1/2. We’ll continue to use 〈·, ·〉 to denote the action of
an element of H∗ on an element of H.

Theorem 6.2.1. (Lax-Milgram Theorem) Suppose B : H ×H → R
is a bilinear form for which there exist constants α, β > 0 so that

|B[u, v ]| ≤α‖u‖‖v‖, ∀ u, v ∈ H (boundedness)

B[u, u] ≥β‖u‖2, ∀ u ∈ H (coercivity).

Then for each f ∈ H∗, there exists a unique u ∈ H so that

B[u, v ] = 〈f , v〉

for all v ∈ H.



The Lax-Milgram Theorem

Notes. 1. If B is symmetric (i.e., B[u, v ] = B[v , u] for all
u, v ∈ H), then B[u, v ] is an inner product on H, and this is just
the Riesz Representation Theorem.

2. A similar statement is true for a complex Hilbert space H,
assuming B is sesquilinear. There are also many extensions.

3. Before proving the theorem, we’ll work through a simple
application.



Application to Poisson’s Equation

For U ⊂ Rn open and bounded, consider Poisson’s equation,

−∆u = f ∈ H−1(U), in U

u = 0, on ∂U.

The weak formulation for this problem is∫
U

n∑
i ,j=1

δijuxi vxjd~x = 〈f , v〉, ∀ v ∈ H1
0 (U).

If we define the bilinear form

B[u, v ] =

∫
U

n∑
i ,j=1

δijuxi vxjd~x =

∫
U
Du · Dvd~x ,

then we can express this weak formulation as

B[u, v ] = 〈f , v〉, ∀ v ∈ H1
0 (U).



Application to Poisson’s Equation

We see that our Hilbert space for the Lax-Milgram Theorem is
H1

0 (U), and in order to apply the theorem, we only need to check
that B[u, v ] is bounded and coercive.

For boundedness, we have

|B[u, v ]| =
∣∣∣ ∫

U
Du · Dvd~x

∣∣∣
c.s.
≤ ‖Du‖L2(U)‖Dv‖L2(U) ≤ ‖u‖H1(U)‖v‖H1(U).

I.e., α = 1.



Application to Poisson’s Equation

For coercivity, we start with

B[u, u] =

∫
U
|Du|2d~x = ‖Du‖2L2(U).

We recall that Poincare’s inequality (from Theorem 5.6.3) asserts
that there exists a constant C , depending only on n and U, so that

‖u‖L2(U) ≤ C‖Du‖L2(U),

for all u ∈ H1
0 (U).



Application to Poisson’s Equation

We can write

B[u, u] =
1
2
‖Du‖2L2(U) +

1
2
‖Du‖2L2(U)

≥ 1
2C 2 ‖u‖

2
L2(U) +

1
2
‖Du‖2L2(U)

≥β
(
‖u‖2L2(U) + ‖Du‖2L2(U)

)
=β‖u‖2H1(U),

for all u ∈ H1
0 (U). (Here, β = min{ 1

2C2 ,
1
2}.)

The Lax-Milgram Theorem allows us to conclude immediately that
there exists a unique solution u ∈ H1

0 (U) to Poisson’s equation.



Proof of the Lax-Milgram Theorem

1. First, for each fixed u ∈ H, the mapping Tuv = B[u, v ] is a
bounded linear functional on H. I.e.,

|Tuv | = |B[u, v ]| ≤ α‖u‖‖v‖,

and linearity follows from the bilinearity of B .

We can conclude from the Riesz Representation Theorem that
there exists a unique w ∈ H so that

B[u, v ] = (w , v), ∀ v ∈ H.

Let’s denote by A : H → H the map that takes u ∈ H as input and
returns w ∈ H in this way. I.e.,

B[u, v ] = (Au, v), ∀v ∈ H.



Proof of the Lax-Milgram Theorem

2. Claim 1. A ∈ H∗.

To see that A is linear, let λ1, λ2 ∈ R, u1, u2 ∈ H, and compute(
A(λ1u1 + λ2u2), v

)
=B[λ1u1 + λ2u2, v ]

=λ1B[u1, v ] + λ2B[u2, v ]

=λ1(Au1, v) + λ2(Au2, v)

= (λ1Au1 + λ2Au2, v).

Since this is true for all v ∈ H, we can conclude that

A(λ1u1 + λ2u2) = λ1Au1 + λ2Au2.



Proof of the Lax-Milgram Theorem

To see that A is bounded, we first note that there’s nothing to
show if Au = 0. If Au 6= 0, we compute

‖Au‖2 = (Au,Au) = B[u,Au] ≤ α‖u‖‖Au‖.

Dividing by ‖Au‖, we see that

‖Au‖ ≤ α‖u‖.



Proof of the Lax-Milgram Theorem

3. Claim 2. A is injective, and the range of A, R(A), is closed in
H.

To see that A is injective, we use coercivity to write

β‖u‖2 ≤ B[u, u] = (Au, u)
c.s.
≤ ‖Au‖‖u‖.

If ‖u‖ 6= 0, we divide to see that

‖Au‖ ≥ β‖u‖.

(This is trivially true if ‖u‖ = 0.) In particular, if u1, u2 ∈ H, then
‖A(u1 − u2)‖ ≥ β‖u1 − u2‖, from which it’s clear that A is
injective. (I.e., u1 6= u2 =⇒ Au1 6= Au2.)



Proof of the Lax-Milgram Theorem

To see that R(A) is closed in H, let {uj}∞j=1 ⊂ H satisfy Auj → w
for some w ∈ H. We need to show that there exists u ∈ H so that
Au = w (i.e., w ∈ R(A)).

For this, we notice that

‖ui − uj‖ ≤
1
β
‖Aui − Auj‖.

The sequence {Auj}∞j=1 converges, so it must be Cauchy, so we see
that {uj}∞j=1 must be Cauchy, and so must converge to some
u ∈ H. Since A is bounded,

‖Au − w‖ = lim
j→∞
‖Au − Auj‖ ≤ α lim

j→∞
‖u − uj‖ = 0.

I.e., Au = w . (Alternatively, since A is bounded, we know from the
Closed Graph Theorem that A is closed, and this allows us to
conclude Au = w .)



Proof of the Lax-Milgram Theorem

4. Claim 3. R(A) = H.

Suppose not, and recall that since R(A) is closed, we can write

H = R(A)⊕ R(A)⊥.

If R(A) ( H, then we can find w ∈ R(A)⊥\{0}, and for this w we
will have

0 6= β‖w‖2 ≤ B[w ,w ] = (Aw ,w) = 0,

which is a contradiction.

We can conclude from the Bounded Inverse Theorem that A has a
bounded linear inverse, A−1.



Proof of the Lax-Milgram Theorem

5. According to the Riesz Representation Theorem, for each
f ∈ H∗ we can find a unique w ∈ H so that

〈f , v〉 = (w , v)

for all v ∈ H. In this way, we see that we can solve

B[u, v ] = 〈f , v〉, ∀v ∈ H

by solving
B[u, v ] = (w , v), ∀v ∈ H.

Recalling that
B[u, v ] = (Au, v), ∀v ∈ H,

we see that Au = w , and the solution we’re looking for is
u = A−1w .



Proof of the Lax-Milgram Theorem

6. For uniqueness, suppose u and ũ are two solutions so that

B[u, v ] = 〈f , v〉 ∀v ∈ H

B[ũ, v ] = 〈f , v〉 ∀v ∈ H.

Subtracting and using linearity, we see that

B[u − ũ, v ] = 0, ∀v ∈ H.

Take v = u − ũ, and notice that (from coercivity)

‖u − ũ‖2 ≤ 1
β
B[u − ũ, u − ũ] = 0.

I.e., u = ũ. �


