Second Order Elliptic PDE: The Lax-Milgram Theorem

MATH 612, Texas A\&M University

Spring 2020

The Lax-Milgram Theorem

Let H denote a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|=(\cdot, \cdot)^{1 / 2}$. We'll continue to use $\langle\cdot, \cdot\rangle$ to denote the action of an element of H^{*} on an element of H.

Theorem 6.2.1. (Lax-Milgram Theorem) Suppose $B: H \times H \rightarrow \mathbb{R}$ is a bilinear form for which there exist constants $\alpha, \beta>0$ so that

$$
\begin{aligned}
|B[u, v]| & \leq \alpha\|u\|\|v\|, \quad \forall u, v \in H \quad \text { (boundedness) } \\
B[u, u] & \geq \beta\|u\|^{2}, \quad \forall u \in H \quad \text { (coercivity). }
\end{aligned}
$$

Then for each $f \in H^{*}$, there exists a unique $u \in H$ so that

$$
B[u, v]=\langle f, v\rangle
$$

for all $v \in H$.

The Lax-Milgram Theorem
Notes. 1. If B is symmetric (i.e., $B[u, v]=B[v, u]$ for all $u, v \in H$), then $B[u, v]$ is an inner product on H, and this is just the Riesz Representation Theorem.
2. A similar statement is true for a complex Hilbert space H, assuming B is sesquilinear. There are also many extensions.
3. Before proving the theorem, we'll work through a simple application.

Application to Poisson's Equation

For $U \subset \mathbb{R}^{n}$ open and bounded, consider Poisson's equation,

$$
\begin{aligned}
-\Delta u & =f \in H^{-1}(U), \quad \text { in } U \\
u & =0, \quad \text { on } \partial U .
\end{aligned}
$$

The weak formulation for this problem is

$$
\int_{U} \sum_{i, j=1}^{n} \delta_{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=\langle f, v\rangle, \quad \forall v \in H_{0}^{1}(U)
$$

If we define the bilinear form

$$
B[u, v]=\int_{U} \sum_{i, j=1}^{n} \delta_{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=\int_{U} D u \cdot D v d \vec{x}
$$

then we can express this weak formulation as

$$
B[u, v]=\langle f, v\rangle, \quad \forall v \in H_{0}^{1}(U)
$$

Application to Poisson's Equation

We see that our Hilbert space for the Lax-Milgram Theorem is $H_{0}^{1}(U)$, and in order to apply the theorem, we only need to check that $B[u, v]$ is bounded and coercive.

For boundedness, we have

$$
\begin{aligned}
&|B[u, v]|=\left|\int_{U} D u \cdot D v d \vec{x}\right| \\
& \quad \begin{array}{l}
\text { c.s. } \\
\leq
\end{array}\|D u\|_{L^{2}(U)}\|D v\|_{L^{2}(U)} \leq\|u\|_{H^{1}(U)}\|v\|_{H^{1}(U)} .
\end{aligned}
$$

I.e., $\alpha=1$.

Application to Poisson's Equation

For coercivity, we start with

$$
B[u, u]=\int_{U}|D u|^{2} d \vec{x}=\|D u\|_{L^{2}(U)}^{2}
$$

We recall that Poincare's inequality (from Theorem 5.6.3) asserts that there exists a constant C, depending only on n and U, so that

$$
\|u\|_{L^{2}(U)} \leq C\|D u\|_{L^{2}(U)},
$$

for all $u \in H_{0}^{1}(U)$.

Application to Poisson's Equation

We can write

$$
\begin{aligned}
B[u, u] & =\frac{1}{2}\|D u\|_{L^{2}(U)}^{2}+\frac{1}{2}\|D u\|_{L^{2}(U)}^{2} \\
& \geq \frac{1}{2 C^{2}}\|u\|_{L^{2}(U)}^{2}+\frac{1}{2}\|D u\|_{L^{2}(U)}^{2} \\
& \geq \beta\left(\|u\|_{L^{2}(U)}^{2}+\|D u\|_{L^{2}(U)}^{2}\right) \\
& =\beta\|u\|_{H^{1}(U)}^{2},
\end{aligned}
$$

for all $u \in H_{0}^{1}(U)$. (Here, $\beta=\min \left\{\frac{1}{2 C^{2}}, \frac{1}{2}\right\}$.)
The Lax-Milgram Theorem allows us to conclude immediately that there exists a unique solution $u \in H_{0}^{1}(U)$ to Poisson's equation.

Proof of the Lax-Milgram Theorem

1. First, for each fixed $u \in H$, the mapping $T_{u} v=B[u, v]$ is a bounded linear functional on H. I.e.,

$$
\left|T_{u} v\right|=|B[u, v]| \leq \alpha\|u\|\|v\|,
$$

and linearity follows from the bilinearity of B.
We can conclude from the Riesz Representation Theorem that there exists a unique $w \in H$ so that

$$
B[u, v]=(w, v), \quad \forall v \in H .
$$

Let's denote by $A: H \rightarrow H$ the map that takes $u \in H$ as input and returns $w \in H$ in this way. I.e.,

$$
B[u, v]=(A u, v), \quad \forall v \in H
$$

Proof of the Lax-Milgram Theorem
2. Claim 1. $A \in H^{*}$.

To see that A is linear, let $\lambda_{1}, \lambda_{2} \in \mathbb{R}, u_{1}, u_{2} \in H$, and compute

$$
\begin{aligned}
\left(A\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right), v\right) & =B\left[\lambda_{1} u_{1}+\lambda_{2} u_{2}, v\right] \\
& =\lambda_{1} B\left[u_{1}, v\right]+\lambda_{2} B\left[u_{2}, v\right] \\
& =\lambda_{1}\left(A u_{1}, v\right)+\lambda_{2}\left(A u_{2}, v\right) \\
& =\left(\lambda_{1} A u_{1}+\lambda_{2} A u_{2}, v\right) .
\end{aligned}
$$

Since this is true for all $v \in H$, we can conclude that

$$
A\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right)=\lambda_{1} A u_{1}+\lambda_{2} A u_{2} .
$$

Proof of the Lax-Milgram Theorem

To see that A is bounded, we first note that there's nothing to show if $A u=0$. If $A u \neq 0$, we compute

$$
\|A u\|^{2}=(A u, A u)=B[u, A u] \leq \alpha\|u\|\|A u\| .
$$

Dividing by $\|A u\|$, we see that

$$
\|A u\| \leq \alpha\|u\| .
$$

Proof of the Lax-Milgram Theorem
3. Claim 2. A is injective, and the range of $A, R(A)$, is closed in H.

To see that A is injective, we use coercivity to write

$$
\beta\|u\|^{2} \leq B[u, u]=(A u, u) \stackrel{\text { c.s. }}{\leq}\|A u\|\|u\| .
$$

If $\|u\| \neq 0$, we divide to see that

$$
\|A u\| \geq \beta\|u\| .
$$

(This is trivially true if $\|u\|=0$.) In particular, if $u_{1}, u_{2} \in H$, then $\left\|A\left(u_{1}-u_{2}\right)\right\| \geq \beta\left\|u_{1}-u_{2}\right\|$, from which it's clear that A is injective. (I.e., $u_{1} \neq u_{2} \Longrightarrow A u_{1} \neq A u_{2}$.)

Proof of the Lax-Milgram Theorem

To see that $R(A)$ is closed in H, let $\left\{u_{j}\right\}_{j=1}^{\infty} \subset H$ satisfy $A u_{j} \rightarrow w$ for some $w \in H$. We need to show that there exists $u \in H$ so that $A u=w$ (i.e., $w \in R(A)$).

For this, we notice that

$$
\left\|u_{i}-u_{j}\right\| \leq \frac{1}{\beta}\left\|A u_{i}-A u_{j}\right\|
$$

The sequence $\left\{A u_{j}\right\}_{j=1}^{\infty}$ converges, so it must be Cauchy, so we see that $\left\{u_{j}\right\}_{j=1}^{\infty}$ must be Cauchy, and so must converge to some $u \in H$. Since A is bounded,

$$
\|A u-w\|=\lim _{j \rightarrow \infty}\left\|A u-A u_{j}\right\| \leq \alpha \lim _{j \rightarrow \infty}\left\|u-u_{j}\right\|=0
$$

I.e., $A u=w$. (Alternatively, since A is bounded, we know from the Closed Graph Theorem that A is closed, and this allows us to conclude $A u=w$.)

Proof of the Lax-Milgram Theorem

4. Claim 3. $R(A)=H$.

Suppose not, and recall that since $R(A)$ is closed, we can write

$$
H=R(A) \oplus R(A)^{\perp} .
$$

If $R(A) \subsetneq H$, then we can find $w \in R(A)^{\perp} \backslash\{0\}$, and for this w we will have

$$
0 \neq \beta\|w\|^{2} \leq B[w, w]=(A w, w)=0
$$

which is a contradiction.
We can conclude from the Bounded Inverse Theorem that A has a bounded linear inverse, A^{-1}.

Proof of the Lax-Milgram Theorem

5. According to the Riesz Representation Theorem, for each $f \in H^{*}$ we can find a unique $w \in H$ so that

$$
\langle f, v\rangle=(w, v)
$$

for all $v \in H$. In this way, we see that we can solve

$$
B[u, v]=\langle f, v\rangle, \quad \forall v \in H
$$

by solving

$$
B[u, v]=(w, v), \quad \forall v \in H .
$$

Recalling that

$$
B[u, v]=(A u, v), \quad \forall v \in H
$$

we see that $A u=w$, and the solution we're looking for is $u=A^{-1} w$.
6. For uniqueness, suppose u and \tilde{u} are two solutions so that

$$
\begin{array}{ll}
B[u, v]=\langle f, v\rangle & \forall v \in H \\
B[\tilde{u}, v]=\langle f, v\rangle & \forall v \in H .
\end{array}
$$

Subtracting and using linearity, we see that

$$
B[u-\tilde{u}, v]=0, \quad \forall v \in H
$$

Take $v=u-\tilde{u}$, and notice that (from coercivity)

$$
\|u-\tilde{u}\|^{2} \leq \frac{1}{\beta} B[u-\tilde{u}, u-\tilde{u}]=0
$$

l.e., $u=\tilde{u}$.

