MATH 609-600, Exam \#2 - Solutions

November 18, 2014
(1) (20 pts) Determine the nodes and weights for the formula with highest degree of accuracy

$$
\int_{-1}^{1} x^{2} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right) .
$$

What is the degree of accuracy of this rule?
Solution: This is the two pout Gaussian rule for the weight $w(x)=x^{2}$. The degree of accuracy (DAC) must be 3 . Because of the symmetry the coefficients are the same and the points are symmetric: $A_{0}=A_{1}$ and $1>x_{1}=-x_{0}>0$. Using that the rule is exact for 1 and x^{2} we find: $A_{0}=A_{1}=\frac{1}{3}$ and $x_{1}=-x_{0}=\sqrt{\frac{3}{5}}$.
(2) (20 pts) Prove that all coefficients of the Gaussian rule $\int_{-1}^{1} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)$ are positive.

Solution: The Gaussian rule is exact for all polynomials of degree $2 n+1$. Fix an index $j, 0 \leq j \leq n$. Then the Gaussian rule will be exact for the function $f_{j}(x)=\prod_{i \neq j}\left(\frac{x-x_{i}}{x_{j}-x_{i}}\right)^{2}$. The rule applied for f_{j} reduces to

$$
0<\int_{-1}^{1} \prod_{i \neq j}\left(\frac{x-x_{i}}{x_{j}-x_{i}}\right)^{2} d x=\sum_{i=0}^{n} A_{i} f_{j}\left(x_{i}\right)=A_{j} .
$$

(3) (20 pts) Use Lagrange interpolation to derive the formula for numerical differentiation of $f^{\prime}(x)$ and the approximation error of the rule using the values $f(x), f(x+h)$, and $f(x+4 h)$.

Solution: Using Taylor series we obtain

$$
f^{\prime}(x)=\frac{-15 f(x)+16 f(x+h)-f(x+2 h)}{12 h}+\mathcal{O}\left(h^{2}\right) .
$$

(4) (20 pts) Prove that

$$
f[0,1, \ldots, m]=\frac{1}{m!} \sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} f(j) .
$$

Solution: In class (and in HW) we showed that $f[0,1, \ldots, m]=\sum_{j=0}^{m} f(j) \prod_{i \neq j} \frac{1}{j-i}$ and the problem follows by observing that $\prod_{i \neq j} \frac{1}{j-i}=\frac{1}{m!}(-1)^{m-j}\binom{m}{j}$.
(5) (20 pts) Let $f(x)$ has the following values: $f(0)=1, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f(1)=2$, and $f^{\prime \prime \prime}(1)=2014$. Find a polynomial $p(x)$ of minimal degree interpolating this data, i.e., $f(0)=p(0), f(1)=p(1), f^{(j)}(0)=p^{(j)}(0)$ for $j=1,2$, and $f^{(3)}(1)=p^{(3)}(1)$.

Solution: Using the divided difference formula (or Hermite formula) we derive that $p(x)=1+x$ is the unique cubic polynomial which interpolates the data $f(0)=1, f^{\prime}(0)=1$, $f^{\prime \prime}(0)=0$, and $f(1)=2$. Unfortunately $p^{\prime \prime \prime}(1) \neq 2014$ and we need to find a fourth degree polynomial to fit this data set. The way to get one is to seek a function q such that:

$$
q(x)=p(x)+\alpha x^{3}(x-1)
$$

and $q^{\prime \prime \prime}(1)=2014$. Solving this equation for α gives

$$
q(x)=p(x)+\frac{1007}{9} x^{3}(x-1) .
$$

(6) (20 pts) Given the nodes $x_{0}<x_{1}<\cdots<x_{12}$, we interpolate $f(x)=x^{13}$ with a polynomial $p(x)$ of degree 12 using these 13 nodes in $[-1,1]$.
(a) What is a good upper bound for $|f(x)-p(x)|$ on $[-1,1]$?

Solution: The error formula for polynomial interpolation gives

$$
|f(x)-p(x)|=\left|\frac{f^{(13)}(\eta)}{13!} \prod_{i=0}^{12}\left(x-x_{i}\right)\right|=\prod_{i=0}^{12}\left|x-x_{i}\right|
$$

and on the interval on the interval $[-1,1]$ the best we can say is $|f(x)-p(x)| \leq 2^{13}$.
(b) What is the best possible bound for $\max _{-1 \leq x \leq 1}|f(x)-p(x)|$ and for what set of nodes you have this optimal bound?

Solution: The optimal bound can be achieved only for Chebyshev nodes, i.e., when the nodes $\left\{x_{i}\right\}$ are the zeros of the Chebyshev polynomial $T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right)$ and the bound for $n=12$ is:

$$
\max _{-1 \leq x \leq 1}|f(x)-p(x)|=\max _{-1 \leq x \leq 1} \prod_{i=0}^{12}\left|x-x_{i}\right|=\frac{1}{2^{12}} \max _{-1 \leq x \leq 1}\left|T_{12}(x)\right|=\frac{1}{4096}
$$

