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M602: Methods and Applications of Partial Differential Equations
Final TEST, December, 2008

Notes, books, and calculators are not authorized.

Show all your work in the blank space you are given on the exam sheet. Always justify your
answer. Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞

f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞

f(ω)e−iωxdω, (1)

F(f ∗ g) = 2πF(f)F(g), (2)

F(e−α|x|) =
1

π

α

ω2 + α2
, F(

2α

x2 + α2
)(ω) = e−α|ω|, (3)

F(f(x − β))(ω) = eiβωF(f)(ω), (4)
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Question 1

Consider the PDE

utt − uxx = 0, 0 ≤ x ≤ 2, 0 < t,

u(0, t) = 0, u(2, t) = 0 0 < t,

ut(x, 0) = 0, u(x, 0) = f(x) :=

{

x 0 ≤ x ≤ 1,

2 − x 1 ≤ x ≤ 2.
0 < x < +2.

(a) Give u(x,t) for all x ∈ [0, +2], t > 0. (Hint use an extension technique).

We notice first that the wave speed is 2. We define fo to be the odd extension of f over (−2, +2),
the we define fop to be the periodic extension of fo over (−∞, +∞) with period 4. From class we
know that the solution to the above problem is given by the D’Alembert formula

u(x, t) =
1

2
(fop(x − 2t) + fop(x + 2t)).
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(b) Using (a), compute u(x, 1
2 ), for all x ∈ [0, +2].

We have to compute fop(x − 1
2 ) and fop(x + 1

2 ).

Case 1: 0 ≤ x ≤ 1
2 . Then − 1

2 ≤ x − 1
2 ≤ 0 and by definition of fop, fop(x − 1

2 ) = −f(−x + 1
2 ) =

x − 1
2 . We also have 1

2 ≤ x + 1
2 ≤ 1, which means fop(x + 1

2 ) = f(x + 1
2 ) = x + 1

2 . Finally
u(x, 1

2 ) = 1
2 (x − 1

2 + x + 1
2 ) = x for all x ∈ [0, 1

2 ].

Case 2: 1
2 ≤ x ≤ 3

2 . Then 0 ≤ x − 1
2 ≤ 1 and fop(x − 1

2 ) = f(x − 1
2 ) = x − 1

2 . We also
have 1 ≤ x + 1

2 ≤ 2, which means fop(x + 1
2 ) = f(x + 1

2 ) = 2 − (x + 1
2 ) = −x + 3

2 . Finally
u(x, 1

2 ) = 1
2 (x − 1

2 − x + 3
2 ) = 1

2 for all x ∈ [ 12 , 3
2 ].

Case 3: 3
2 ≤ x ≤ 2. Then 1 ≤ x − 1

2 ≤ 3
2 and fop(x − 1

2 ) = f(x − 1
2 ) = 2 − (x − 1

2 ) = 5
2 − x. We

also have 2 ≤ x+ 1
2 ≤ 5

2 , which means by periodicity that fop(x+ 1
2 ) = fop(x+ 1

2 −4) = fop(x− 7
2 ).

Now we observe that −2 ≤ x − 7
2 ≤ − 3

2 , which means fop(x + 1
2 ) = fop(x − 7

2 ) = −f(7
2 − x) =

−(2 − (7
2 − x)) = −(− 3

2 + x) = 3
2 − x. In conclusion u(x, 1

2 ) = 1
2 (5

2 − x + 3
2 − x) = 2 − x for all

x ∈ [ 32 , 2].

Conclusion: We now put everything togther

u(x,
1

2
) =











x, x ∈ [0, 1
2 ],

1
2 , x ∈ [ 12 , 3

2 ],

2 − x, x ∈ [ 32 , 2].

.
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Question 2

Let Ω = {(t, x) ∈ R
2 : t > 0, x ≥ −

√
t}. Let Γ be defined by the following parameterization

Γ = {x = xΓ(s), t = tΓ(s), s ∈ R}, with xΓ(s) = s and tΓ(s) = s2 if s ≤ 0, xΓ(s) = s and
tΓ(s) = 0 if s ≥ 0. Solve the following PDE (give the implicit and explicit representations):

ut + 2ux + 3u = 0, in Ω, and u(xΓ(s), tΓ(s)) := e−tΓ(s)−xΓ(s), ∀s ∈ (−∞, +∞).

We define the characteristics by

dX(t, s)

dt
= 2, X(tΓ(s), s) = xΓ(s).

This gives X(t, s) = xΓ(s) + 2(t − tΓ(s)). Upon setting φ(t, s) = u(X(t, s), t), we observe that
∂tφ(t, s) + 3φ(t, s) = 0, which means

φ(t, s) = ce−3t.

The initial condition implies φ(tΓ(s), s) = u(xΓ(s), tΓ(s)) = e−tΓ(s)−xΓ(s) = ce−3tΓ(s); as a result
c = e2tΓ(s)−xΓ(s) and

φ(t, s) = e2tΓ(s)−xΓ(s)−3t.

The implicit representation of the solution is

u(X(t, s), t) = e2tΓ(s)−xΓ(s)−3t, X(t, s) = xΓ(s) + 2(t − tΓ(s)).

Now we give the explicit representation.
We observe the following:

2tΓ(s) − xΓ(s) = 2t − X(t, s),

which gives
u(X(t, s), t) = e2t−X(t,s)−3t = e−X(t,s)−t.

In conclusion, the explicit representation of the solution to the problem is the following:

u(x, t) = e−x−t.
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Question 3

Solve the integral equation: f(x) + 1
2π

∫ +∞

−∞
f(y)

(x−y)2+1dy = 1
x2+4 + 1

x2+1 , for all x ∈ (−∞, +∞).

The equation can be re-written

f(x) +
1

2π
f ∗ 1

x2 + 1
=

1

x2 + 4
+

1

x2 + 1
.

We take the Fourier transform of the equation and we apply the Convolution Theorem (see (2))

F(f) +
1

2π
2πF(

1

x2 + 1
)F(f) = F(

1

x2 + 4
) + F(

1

x2 + 1
).

Using (3), we obtain

F(f) +
1

2
e−|ω|F(f) =

1

4
e−2|ω| +

1

2
e−|ω|,

which gives

F(f)(1 +
1

2
e−|ω|) =

1

2
e−|ω|(

1

2
e−|ω| + 1).

We then deduce

F(f) =
1

2
e−|ω|.

Taking the inverse Fourier transform, we finally obtain f(x) = 1
x2+1 .
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Question 4

Consider the following conservation equation

∂tu + u∂xu = 0, x ∈ (−∞, +∞), t > 0, u(x, 0) = u0(x) :=



















0 if x ≤ 0,

x if 0 ≤ x ≤ 1,

2 − x if 1 ≤ x ≤ 2

0 if 2 ≤ x

(i) Solve this problem using the method of characteristics for 0 ≤ t < 1.

The characteristics are defined by

dX(t, x0)

dt
= u(X(t, x0), t), X(0, x0) = x0.

From class we know that u(X(t, x0), t) does not depend on time, that is to say

X(t, x0) = u(X(0, x0), 0)t + x0 = u(x0, 0)t + x0 = u0(x0)t + x0.

Case 1: If x0 ≤ 0, we have u0(x0) = 0 and X(t, x0) = x0; as a result, x0 = X(t, x0), and

u(x, t) = 0, if x ≤ 0.

Case 2: If 0 ≤ x0 ≤ 1, we have u0(x0) = x0 and X(t, x0) = tx0 + x0; as a result x0 = X/(1 + t),
and

u(x, t) = x/(1 + t), if 0 ≤ x ≤ 1 + t.

case 3: If 1 ≤ x0 ≤ 2, we have u0(x0) = 2 − x0 and X(t, x0) = t(2 − x0) + x0; as a result
x0 = (X(t, x0) − 2t)/(1 − t), which implies

u(x, t) = 2 − (x − 2t)/(1 − t) = (2 − x)/(1 − t), if 1 + t ≤ x ≤ 2.

Case 4: If 2 ≤ x0, we have u0(x0) = 0 and X(t, x0) = x0; as a result x0 = X(t, x0), which implies

u(x, t) = 0 if 2 ≤ x.
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(ii) Draw the characteristics for all t > 0 and all x ∈ R.

x = 1x = 0 x=2

t = 1

x

t

(iii) There is a shock forming at t = 1 and x = 2. Let xs(t) be the location of the shock as a
function of t. Compute xs(t) using the fact that the solution for t > 1 is given by

u(x, t) =











0 if x < 0,

u−(t) x
xs(t)

if 0 ≤ x < xs(t),

0 if xs(t) ≤ x,

where u−(t) is the value of u at the left of the shock

Let u−(t) be the value of u at the left of the shock. Conservation of mass implies

1

2
u−(t)xs(t) =

∫ +∞

−∞

u0(x)dx = 1.

The Rankin-Hugoniot formula gives

ẋs(t) =
1
2 (u−(t))2

u−(t)
=

1

2
u−(t) =

1

xs(t)
.

This implies

xs(t)ẋs(t) =
1

2

d

dt
(xs(t)

2) = 1, with xs(1) = 2.

The Fundamental Theorem of Calculus implies

xs(t)
2 − 22 = 2(t − 1),

which in turn implies xs(t) =
√

2t + 2, for all t ≥ 1.
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Question 5

Use the Fourier transform method to compute the solution of utt − a2uxx = 0, where x ∈ R

and t ∈ (0, +∞), with u(0, x) = f(x) := sin2(x) and ut(0, x) = 0 for all x ∈ R.

Take the Fourier transform in the x direction:

F(u)tt + ω2a2F(u) = 0.

This is an ODE. The solution is

F(u)(t, ω) = c1(ω) cos(ωat) + c2(ω) sin(ωat).

The initial boundary conditions give

F(u)(0, ξ) = F(f)(ω) = c1(ω)

and c2(ω) = 0. Hence

F(t, ω) = F(f)(ω) cos(ωat) =
1

2
F(f)(ω)(eiaωt + e−iaωt).

Using the shift lemma (i.e., formula (4)) we obtain

u(t, x) =
1

2
(f(x − at) + f(x + at)) =

1

2
(sin2(x + at) + sin2(x − at)).

Note that this is the D’Alembert formula.
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Question 6

Consider the equation u′′(x) = f(x) for x ∈ (0, 1) with u(0) = 1 and u′(1) = 1. Let G(x, x0)
be the associated Green’s function.
(a) Give an expression of u(x) in terms of G, f and the boundary data.

The Green’s function is defined by

G′′(x, x0) = δ(x − x0), G(0, x0) = 0, G′(1, x0) = 0.

We multiply the equation by u and we integrate (in the distribution sense),

∫ 1

0

G′′(x, x0)u(x)dx = u(x0).

We integrates by parts twice and we obtain,

u(x0) = −
∫ 1

0

G′(x, x0)u
′(x)dx + G′(1, x0)u(1) − G′(0, x0)u(0)

=

∫ 1

0

G(x, x0)u
′′(x)dx − G(1, x0)u

′(1) + G(0, x0)u
′(0) + G′(1, x0)u(1) − G′(0, x0)u(0).

Then, using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx − G′(0, x0) − G(1, x0), ∀x0 ∈ (0, 1).
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(b) Compute G(x, x0).

For x < x0 we have
G(x, x0) = ax + b.

The boundary condition G(0, x0) = 0 implies b = 0. For x0 < x we have

G(x, x0) = cx + d.

The boundary condition G′(1, x0) = 0 implies c = 0. Moreover we have

1 = lim
ǫ→0

∫ ǫ

−ǫ

G′′(x, x0)dx = G′(x+
0 , x0) − G′(x−

0 , x0) = −a,

meaning a = −1. The continuity of G at x0 implies

ax0 = d,

implying d = −x0. As a result,

G(x, x0) =

{

−x, if 0 ≤ x ≤ x0,

−x0, if x0 ≤ x ≤ 1.


