Extra homeworks problems, Math 412 - Popov

Name: \qquad

SHOW ALL WORK!

Problem 1. Consider the conservation equation

$$
\partial_{t} u+u \partial_{x} u=0, \quad x \in(-\infty, \infty), t>0
$$

with the initial condition

$$
\begin{array}{ll}
u(x, 0)=4, & \text { if } x<0, \\
u(x, 0)=4-x, & \text { if } 0<x<3, \\
u(x, 0)=1, & \text { if } 3<x<4, \\
u(x, 0)=12, & \text { if } x>4 .
\end{array}
$$

Solve this problem for $t>0$.

Problem 2. Consider the conservation equation

$$
u_{t}+f(u)_{x}=0, \quad x \in(-\infty, \infty), t>0
$$

with the flux f given by

$$
\begin{array}{ll}
f(u)=\frac{1}{4} u(1-u), & \text { if } u<0.5, \\
f(u)=\frac{1}{2} u(u-1)+\frac{3}{16}, & \text { if } u>0.5 .
\end{array}
$$

and the inital condition

$$
\begin{array}{ll}
u(x, 0)=0, & \text { if } x<0.25, \\
u(x, 0)=1, & \text { if } x>0.25 .
\end{array}
$$

Solve this problem for $0<t \leq 1$.

Problem 3. Consider the conservation equation

$$
u_{t}+f(u)_{x}=0, \quad x \in(-\infty, \infty), t>0
$$

with the flux f given by $f(u)=\frac{u^{2}}{u^{2}+(1-u)^{2}}$ and the inital condition
$u(x, 0)=1, \quad$ if $x<0$,
$u(x, 0)=0, \quad$ if $x>0$.
Solve this problem for $t>0$.

