Math 147 Exam 3 Review - Fall 2012

1. Find the limits of each of the following:

a)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

b)
$$\lim_{x \to 0^+} 2x \cot x$$

c)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{4x}$$

d.)
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\sqrt{x}}$$

e.)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{4x}$$

- 2. Using the graph of f'(x) below, determine
 - all critical values of f(x).
 - intervals where f(x) is increasing and decreasing.
 - local extrema of f(x).
 - intervals where f(x) is concave up and concave down.
 - the x-coordinates of the inflection points of f(x).

- 3. Find the absolute maximum and minimum of the given function on the given interval.
 - a) $x^3 5x^2 + 3$ on [-1, 3]
 - b) $x \ln x$ on $[e^{-2}, 1]$
- 4. Find the critical numbers for $f(x) = x\sqrt{6-x}$
- 5. Find the intervals where the given function is increasing and decreasing and identify all local extrema:

a)
$$f(x) = x^3 - 2x^2 + x$$

b) $f(x) = x^2 e^{2x}$
c) $f(x) = \sin x + x, \ 0 \le x \le 2\pi$

- 6. Determine where the graph of $f(x) = x^4 + 8x^3 + 13$ is concave up and concave down and find the inflection points.
- 7. A cardboard box holding 32 cubic inches with a square base and open top is to be constructed. Find the dimensions of the box that minimize the amount of material used.
- 8. The top and bottom margins of a poster are each 6 cm and the side margins are each 4 cm. If the area of printed material on the poster is fixed at 384 square cm, find the dimensions of the poster with the smallest area.
- 9. Find the dimensions of the isosceles triangle of largest area that can be inscribed in a circle of radius 2.
- 10. Expand and find the sum: $\sum_{i=1}^{5} i^2$
- 11. Write $1 + \frac{1}{e} + \frac{1}{e^2} + \frac{1}{e^3} + \frac{1}{e^4} + \frac{1}{e^5}$ in summation notation.
- 12. Set up the Riemann sum to approximate the area under the graph of $f(x) = e^x$ over the interval [-1, 1] by using the partition

 $P = \{-1, -\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, 1\}$ and choosing c_k to be the right endpoint of each interval. Construct the approximating rectangles. Does this over approximate or under approximate the true area? Support your answer.

- 13. Approximate $\int_{1}^{3} \frac{1}{x} dx$ using 5 equallyspaced left rectangles.
- 14. Use a graph to interpret $\int_{-1}^{0} |2x+1| dx$ in terms of an area.
- 15. Use an area formula from geometry to find the value of $\int_{-4}^{4} \left(\sqrt{16 - x^2} - 2\right) dx$ by interpreting it as the (signed) area under the graph.
- 16. Express the following definite integrals as a limit of infinite sums.

(a)
$$\int_{1}^{3} (x^2 + 2x) dx$$

(b) $\int_{\pi/2}^{\pi} (x \sin(x) + 2) dx$

- 17. Express $\lim_{||P|| \to 0} \sum_{k=1}^{n} \sqrt{5c_k + c_k^2} \Delta x_k$, where $P = [x_0, x_1, x_2, x_3, ..., x_n], n = 1, 2, 3, ...,$ is a sequence of partitions of [1, 4] into n subintervals, $c_k \in [x_{k-1}, x_k]$, and $\Delta x_k = x_k x_{k-1}$.
- 18. Express the following as a single integral, if possible.

$$\int_{-3}^{5} f(x) \, dx - \int_{-3}^{0} f(x) \, dx + \int_{5}^{6} f(x) \, dx$$

19. Given $\int_{0}^{5} f(x) \, dx = 10$ and $\int_{5}^{7} f(x) \, dx = 3$,
find $\int_{0}^{7} (4f(x) + 2) \, dx$

**Note: There are no problems from 2.1, 2.2, or 5.6 on this review. To study for these sections refer to recitation activities, quizzes, and suggested homework.