Math 147 Exam 3 Review - Fall 2012

1. Find the limits of each of the following:
a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$
b) $\lim _{x \rightarrow 0^{+}} 2 x \cot x$
c) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{4 x}$
d.) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sqrt{x}}$
e.) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{4 x}$
2. Using the graph of $f^{\prime}(x)$ below, determine

- all critical values of $f(x)$.
- intervals where $f(x)$ is increasing and decreasing.
- local extrema of $f(x)$.
- intervals where $f(x)$ is concave up and concave down.
- the x -coordinates of the inflection points of $f(x)$.

Assume f is continuous.

3. Find the absolute maximum and minimum of the given function on the given interval.
a) $x^{3}-5 x^{2}+3$ on $[-1,3]$
b) $x \ln x$ on $\left[e^{-2}, 1\right]$
4. Find the critical numbers for $f(x)=$ $x \sqrt{6-x}$
5. Find the intervals where the given function is increasing and decreasing and identify all local extrema:
a) $f(x)=x^{3}-2 x^{2}+x$
b) $f(x)=x^{2} e^{2 x}$
c) $f(x)=\sin x+x, 0 \leq x \leq 2 \pi$
6. Determine where the graph of $f(x)=x^{4}+$ $8 x^{3}+13$ is concave up and concave down and find the inflection points.
7. A cardboard box holding 32 cubic inches with a square base and open top is to be constructed. Find the dimensions of the box that minimize the amount of material used.
8. The top and bottom margins of a poster are each 6 cm and the side margins are each 4 cm . If the area of printed material on the poster is fixed at 384 square cm , find the dimensions of the poster with the smallest area.
9. Find the dimensions of the isosceles triangle of largest area that can be inscribed in a circle of radius 2 .
10. Expand and find the sum: $\sum_{i=1}^{5} i^{2}$
11. Write $1+\frac{1}{e}+\frac{1}{e^{2}}+\frac{1}{e^{3}}+\frac{1}{e^{4}}+\frac{1}{e^{5}}$ in summation notation.
12. Set up the Riemann sum to approximate the area under the graph of $f(x)=e^{x}$ over the interval $[-1,1]$ by using the partition
$P=\left\{-1,-\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, 1\right\}$ and choosing c_{k} to be the right endpoint of each interval. Construct the approximating rectangles. Does this over approximate or under approximate the true area? Support your answer.
13. Approximate $\int_{1}^{3} \frac{1}{x} d x$ using 5 equallyspaced left rectangles.
14. Use a graph to interpret $\int_{-1}^{0}|2 x+1| d x$ in terms of an area.
15. Use an area formula from geometry to find the value of $\int_{-4}^{4}\left(\sqrt{16-x^{2}}-2\right) d x$ by interpreting it as the (signed) area under the graph.
16. Express the following definite integrals as a limit of infinte sums.
(a) $\int_{1}^{3}\left(x^{2}+2 x\right) d x$
(b) $\int_{\pi / 2}^{\pi}(x \sin (x)+2) d x$
17. Express $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{5 c_{k}+c_{k}^{2}} \Delta x_{k}$, where $P=\left[x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right], \quad n=1,2,3, \ldots$, is a sequence of partitions of $[1,4]$ into n subintervals, $c_{k} \in\left[x_{k-1}, x_{k}\right]$, and $\Delta x_{k}=$ $x_{k}-x_{k-1}$.
18. Express the following as a single integral, if possible.
$\int_{-3}^{5} f(x) d x-\int_{-3}^{0} f(x) d x+\int_{5}^{6} f(x) d x$
19. Given $\int_{0}^{5} f(x) d x=10$ and $\int_{5}^{7} f(x) d x=3$, find $\int_{0}^{7}(4 f(x)+2) d x$
**Note: There are no problems from 2.1, 2.2, or 5.6 on this review. To study for these sections refer to recitation activities, quizzes, and suggested homework.

