
Math 148 Exam 1 Practice Problems Spring 2010

Graphing and scientific calculators will not be allowed on the exam, but you will be allowed to use a
four-function calculator for arithmetic computations. The exam will include some multiple choice
and some work-out problems. This review should not be used as your sole source for preparation
for the exam. You should also rework all examples given in lecture, all homework problems, all
recitation assignment problems, and all quiz problems.

1. Evaluate

∫

(ln x)2 dx.

2. Evaluate

∫ 2

0

2x

(x2 − 1)1/3
dx.

3. Evaluate

∫

4x2 + 13x− 9

x3 + 2x2 − 3x
dx.

4. Evaluate

∫

5x2 + 4x+ 3

x(x2 + x+ 1)
dx.

5. Evaluate

∫ 1
√

3

0

tan−1 x dx.

6. Evaluate

∫

x5ex
2

dx.

7a. Find the third order Taylor polynomial near x = 0 for f(x) = tan−1 x.

7b. Use your result from (7a) to approximate the values of π
4

and then π.

8. Suppose f(x) = ln x is approximated by a second order Taylor polynomial near x = 1. Find
the maximum possible error of this approximation for x ∈ [1, 2].

9. Determine the smallest order n that will ensure that the nth order Taylor polynomial for
f(x) = x ln x− x near x = 1 has a maximum error less than 0.01 for x ∈ [1, 2].

10. Solve the differential equation
dy

dx
= y cos x with initial condition y(0) = 1.

11. Assume that the size of a population evolves according to the logistic equation with intrinsic
rate of growth r = 1.25 and carrying capacity K = 500. (a) Find the differential equation that
describes the rate of growth of this population. (b) Find all equilibria, and discuss the stability of
the equilibria using the graphical approach. (c) Find the eigenvalues associated with the equilibria
and then use the stability criterion to determine stability of the equilibria.
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12. For the single-species population model

dp

dt
=

r

2
p

(

1−
( p

K

)2
)

; p(0) = p0,

find all equilibrium points (including negative ones) and determine whether or not each is stable
using the graphical approach. Also, if p0 =

K
2
, compute

lim
t→∞

p(t).

13. For the differential equation

dy

dt
= y2 − 1; y(0) = y0,

identify the stable equilibrium point (there is exactly one) and compute the return time to this
point from y0 = 0.

Solutions

1. This can either be done with a substitution (u = ln x) followed by two applications of integration
by parts, or we can integrate by parts to begin with. For this latter approach, we set u = (ln x)2

and dv = dx, from which we have du = 2(ln x) 1
x
dx and v = x. The integral becomes

∫

(ln x)2dx = x(ln x)2 − 2

∫

ln xdx = x(ln x)2 − 2x ln x+ 2x+ C,

where if you don’t remember the antiderivative of ln x (we did this in class, and we see it often
enough that it is worth memorizing), you can compute it by integration by parts (

∫

ln xdx =
x ln x− x+ C).

2. This is an improper integral, with the integrand infinite at x = 1. We write

∫ 2

0

2x

(x2 − 1)1/3
dx =

∫ 1

0

2x

(x2 − 1)1/3
dx+

∫ 2

1

2x

(x2 − 1)1/3
dx

= lim
c→1−

∫ c

0

2x

(x2 − 1)1/3
dx+ lim

c→1+

∫ 2

c

2x

(x2 − 1)1/3
dx

= lim
c→1−

[3

2
(x2 − 1)2/3

∣

∣

∣

c

0

]

+ lim
c→1+

[3

2
(x2 − 1)2/3

∣

∣

∣

2

c

]

= lim
c→1−

[3

2
(c2 − 1)2/3 − 3

2

]

+ lim
c→1+

[3

2
32/3 − 3

2
(c2 − 1)

]

= − 3

2
+

35/3

2
.
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3. Recognizing that the integrand in this case is a rational function, we proceed with partial
fractions. The denominator factors as x3 + 2x2 − 3x = x(x+ 3)(x− 1), and so we have

4x2 + 13x− 9

x3 + 2x2 − 3x
=

4x2 + 13x− 9

x(x+ 3)(x− 1)
=

A

x
+

B

x+ 3
+

C

x− 1
.

Multiplying by the denominator, we find

4x2 + 13x− 9 = A(x+ 3)(x− 1) +Bx(x− 1) + Cx(x+ 3).

This is a case in which it’s easiest to proceed by choosing particular values of x. We use:

If x = 0 : − 9 = −3A ⇒ A = 3

If x = 1 : 8 = 4C ⇒ C = 2

If x = −3 : − 12 = 12B ⇒ B = −1.

Finally,

∫

4x2 + 13x− 9

x3 + 2x2 − 3x
dx =

∫

3

x
+

−1

x+ 3
+

2

x− 1
dx

=3 ln |x| − ln |x+ 3|+ 2 ln |x− 1|+ C.

4. Again, we have a problem that should clearly be solved by partial fractions, though in this case
the denominator has an irreducible quadratic expression x2 + x+ 1. (One way to check that it’s
irreducible is to use the quadratic formula to see that the equation x2 + x + 1 = 0 has no real
roots. In this case, x = −1±

√
1−4

2
= −1

2
±

√
3
2
i.) The partial fraction decomposition is

5x2 + 4x+ 3

x(x2 + x+ 1)
=

A

x
+

Bx+ C

x2 + x+ 1
.

Multiplying across by the original denominator, we have

5x2 + 4x+ 3 = A(x2 + x+ 1) + (Bx+ C)x = (A+B)x2 + (A+ C)x+ A,

for which we apply the “equating coefficients" method:

constants : 3 =A

x : 4 =A + C

x2 : 5 =A +B.

We conclude A = 3, B = 2, and C = 1, so that

5x2 + 4x+ 3

x(x2 + x+ 1)
=

3

x
+

2x+ 1

x2 + x+ 1
.

This integrates like only an exam problem can:
∫

3

x
dx+

∫

2x+ 1

x2 + x+ 1
dx = 3 ln |x|+ ln |x2 + x+ 1|+ C.

(NOTE: The second integral was computed using a u-substitution.)
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5. Most likely you do not know the antiderivative of tan−1 x, but you should know its derivative.
This leads us to use integration by parts. Take u = tan−1 x and dv = dx. Then du = 1

1+x2dx and
v = x and we have

∫ 1
√

3

0

tan−1 x dx =x tan−1 x

∣

∣

∣

1
√

3

0
−

∫ 1
√

3

0

x

1 + x2
dx

=

(

1√
3
tan−1

(

1√
3

)

− 0

)

− 1

2

∫ 4

3

1

1

m
dm

=
1√
3

(π

6

)

− 1

2
ln | m |

∣

∣

∣

4

3

1

=
π

6
√
3
− 1

2

(

ln
4

3
− ln 1

)

=
π

6
√
3
− 1

2
ln

4

3

(NOTE: The integral obtained using the integration by parts formula was computing by making
the substitution m = 1+ x2 and changing the limits of integration: When x = 0, m = 1+ 02 = 1,

and when x = 1√
3
, m = 1 +

(

1√
3

)2

= 4
3
.)

6. To compute this integral, we must first make an appropriate substitution and then use inte-
gration by parts. Let m = x2. Then dm = 2x dx, which if we solve for dx, we get dx = 1

2x
dm.

Applying this substitution, we obtain

∫

x5ex
2

dx =

∫

x5em
(

1

2x

)

dm

=
1

2

∫

x4em dm

=
1

2

∫

(x2)2em dm

=
1

2

∫

m2em dm

=
1

2

(

m2em − 2mem + 2em
)

+ C(using integration by parts)

=
1

2
x4ex

2 − x2ex
2

+ ex
2

+ C

NOTE: You will need to show your work for the integration by parts step on the exam.
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7a. For the third order polynomial, we have

P3(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3,

for which we compute:

f(x) = tan−1 x ⇒ f(0) = 0

f ′(x) =
1

x2 + 1
⇒ f ′(0) = 1

f ′′(x) = − 2x

(x2 + 1)2
⇒ f ′′(0) = 0

f ′′′(x) = − (x2 + 1)22− 8x2(x2 + 1)

(x2 + 1)4
⇒ f ′′′(0) = −2.

Upon substitution of these values into P3(x), we conclude

P3(x) = x− 1

3
x3.

7b. Notice that the conclusion of (7a) is that

tan−1 x ≈ x− 1

3
x3.

If we recall that tan π
4
= 1, we see that tan−1 1 = π

4
, and so

π

4
≈ 1− 1

3
(1)3 =

2

3
⇒ π ≈ 8

3
.

(The approximation can be improved by taking higher order polynomials.)

8. Taylor’s Inequality (as discussed in class) with a = 1 and interval 1 ≤ x ≤ 2 is given by

| R2(x) |≤
M

3!
| x− 1 |3 where M = maximum of | f ′′′(x) | on 1 ≤ x ≤ 2. Here, f ′′′(x) = 2

x3

which is a decreasing function on [1, 2], so | f ′′′(x) |=| 2
x3 |≤| 2

13
|= 2 for all x ∈ [1, 2]. Also, on this

interval (x−1)3 is an increasing function, so | x−1 |3≤| 2−1 |3= 1, so we have | R2(x) |≤ 2
3!
·1 = 1

3
.

Thus, the maximum error is 1
3
.
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9. In this problem, we are given a maximum error and we are being asked to find the value of n
that produces an error that satisfies this upper limit. We again use Taylor’s Inequality with a = 1
and interval [1, 2] (as discussed in class)

| Rn |≤ M

(n+ 1)!
| x− 1 |n+1 where M = maximum of | f (n+1)(x) | on [1, 2]

but this time we must find a general form for f (n+1)(x). We start by finding the general form for
the nth derivative:

f ′(x) = ln x

f ′′(x) =
1

x

f ′′′(x) = − 1

x2

f (4)(x) =
2

x3

f (5)(x) = − 3!

x4

f (n)(x) = (−1)n
(n− 2)!

x(n−1)
.

This means that f (n+1)(x) = (−1)n+1 (n− 1)!

xn
. Then

M = maximum of | f (n+1)(x) | on [1, 2]

= maximum of
∣

∣

∣

(n− 1)!

xn

∣

∣

∣
on [1, 2] (absolute values kill the (−1)n+1 term)

=(n− 1)! (since
1

xn
is decreasing for positive n)

So we have M = (n−1)!. Since y = x−1 is increasing on [1, 2], its maximum is attained at x = 2,
and we now have

| Rn(x) |≤
M

(n + 1)!
| x− 1 |n+1

=
(n− 1)!

(n+ 1)!
| x− 1 |n+1

≤ 1

(n + 1)(n)
| 2− 1 |n+1

=
1

(n + 1)(n)

We want | Rn(x) |≤ 0.01 = 1
100

, so we are trying to find n so that

1

(n+ 1)(n)
≤ 1

100

Since 9 · 10 = 90 and 10 · 11 = 110, we see that n = 10 is the minimum value that works.
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10. Separating variables and integrating, we have

∫

1

y
dy =

∫

cosx dx ⇒ ln |y| = sin x+ C1 ⇒ |y(x)| = esinx+C1.

We conclude that y(x) = Cesinx, where C = ±eC1 is a constant. Using y(0) = 1, we find
y(x) = esinx.

11.(a) The general differential equation for logistic growth is given by
dN

dt
= rN

(

1− N

K

)

with

N(0) = N0, so in this problem we have

dN

dt
= 1.25N

(

1− N

500

)

with N(0) = N0

(b) We set the right-hand side of the differential equation above equal to 0 and solve for N to find
equilibria N = 0 and N = 500. The graph of the function g(N) = 1.25N

(

1− N
500

)

is a parabola
opening downward (because of negative in front of N2 term) that crosses the horizontal axis at
N = 0 and N = 500. Thus, the graph of g(N) is approximately

500 N

dN/dt

NOTE: Since N represents a population, we only draw the graph for N ≥ 0. For values of N
between 0 and 500, dN

dt
> 0 (since the graph of g(N) = dN

dt
lies above the horizontal axis), so the

population size N increases on (0, 500). This has been indicated by arrows pointing in the positive
direction on the N -axis on (0, 500). For values of N larger than 500, dN

dt
< 0, so the population

size decreases for N > 500. This has been indicated by arrows pointing in the negative direction
on the N -axis to the right of 500. Using this graphical approach, we see that N = 0 is an unstable
equilibrium and N = 500 is a locally stable equilibrium.

(c) To find the eigenvalues associated with each equilibrium, we first find the derivative of g(N) =
1.25N

(

1− N
500

)

:

g(N) =
5

4
N

(

1− N

500

)

=
5

4
N − 1

400
N2 so g ′(N) =

5

4
− 1

200
N

(continued to the next page)
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The eigenvalues λ1 and λ2 associated with the equilibria N = 0 and N = 500, respectively, are

λ1 = g ′(0) =
5

4
and λ2 = g ′(500) =

5

4
− 1

200
(500) = −5

4

According to the stability criterion, since λ1 > 0, N = 0 is unstable, and since λ2 < 0, N = 500 is
locally stable. These results agree with the results obtained from the graphical approach in part
(b).

12. We find the equilibrium points by solving

r

2
pe

(

1−
(pe

K

)2
)

= 0,

which has three solutions pe = −K, 0, K. By sketching the graph of the cubic function g(p) =
r
2
p
(

1−
(

p
K

)2
)

, we see that −K and K are both stable and 0 is unstable. We also see that if

p0 =
K
2
, limt→∞ p(t) = K. NOTE: On the exam, show your sketch and a brief justification as to

how you obtained it. Also, be sure to draw the appropriate directional arrows on the horizontal
axis.

13. First, the equilibrium points are ye = −1, 1, and it’s clear either from the graphical approach
or from the eigenvalue method that only ye = −1 is stable. (You must show this work on the
exam.) Recalling that the return time TR is defined by

y(TR)− ye =
1

e
(y0 − ye),

we have y(TR) = −1 + 1
e
. Next, in order to get information about time, we invert the differential

equation to

dt

dy
=

1

y2 − 1
⇒

∫ TR

0

dt =

∫ −1+ 1

e

0

dy

y2 − 1
.

For the integral in y, we use partial fractions to show

1

y2 − 1
=

1
2

y − 1
−

1
2

y + 1
,

so that

∫ −1+ 1

e

0

dy

y2 − 1
=

∫ −1+ 1

e

0

1
2

y − 1
−

1
2

y + 1
dy

=
1

2
ln |y − 1| − 1

2
ln |y + 1|

∣

∣

∣

−1+ 1

e

0

=
1

2
ln
∣

∣

∣
− 2 +

1

e

∣

∣

∣
− 1

2
ln
∣

∣

∣

1

e

∣

∣

∣

=
1

2
ln(2e− 1).
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