
M147 Practice Problems for Exam 2

Exam 2 will cover sections 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 5.1, and 5.2. Calculators will not be
allowed on the exam. The first ten problems on the exam will be multiple choice. Work will
not be checked on these problems, so you will need to take care in marking your solutions.
For the remaining problems unjustified answers will not receive credit.

1. Compute the derivative of each of the following functions:

1a.
f(x) = x

2

3 + x−7.

1b.
f(x) = x sin x.

1c.

f(x) =
ex − e−x

ex + e−x
.

1d.

f(x) = (2x +
1

x
)2.

2. Suppose
h(x) = f(x)eg(x),

and f(2) = 4, f ′(2) = 7, g(2) = 0, and g′(2) = 3. Compute h′(2).

3. Compute f ′′(x) if
f(x) = sin(

√
2x).

4. Compute dy

dx
given that

sin(xy) = x.

Find an equation for the line that is tangent to this curve at the point ( 1√
2
,
√

2π
4

).

5. Find d2y

dx2 if
xy − ey = 0.

6. An airplane is flying 6 miles above the ground on a flight path that will take it directly
over a radar tracking station. If the distance between the plane and tracking station is
decreasing at a rate of 400 miles per hour when the distance is 10 miles, what is the speed
of the plane?

7. Suppose that two sides of a triangle are 4 cm and 5 cm in length and that the angle
between them is increasing at a rate of .06 rad/s. Find the rate at which the area of the
triangle is increasing when the angle between the sides is π

3
.

8. Let

f(x) = cos x − sin x, −π

4
≤ x ≤ 3π

4
,
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and compute df−1

dx
(1).

9. Evaluate the expression

tan(sin−1(
2

3
)).

10. Show that
d

dx
cos−1 x = − 1√

1 − x2
, −1 < x < +1.

11. Let
y = xtan x, 0 ≤ x <

π

2
,

and compute dy

dx
.

12. Use a linear approximation to estimate a value for

ln(.99).

13. Consider a right triangle with hypotenuse length l and sidelengths 3 and x. Suppose x is
measured as x = 4± .05, and use linear approximation to approximate the associated range
of error on l.

14. Sketch a graph of the function

f(x) = |3 − |x||,

on the interval [−3, 1] and determine all local and global extrema on this interval.

15. Suppose that f(x) is continuous on the interval [2, 5] and differentiable on the interval
(2, 5). Show that if 1 ≤ f ′(x) ≤ 4 for all x ∈ [2, 5], then 3 ≤ f(5) − f(2) ≤ 12.

16a. For the function

f(x) =
x2

1 + x
; x 6= −1,

find the intervals on which f is increasing and the intervals on which x is decreasing.

16b. For the function defined in (16a) find the intervals on which f is concave up and the
intervals on which f is concave down.

17. Suppose that f(x) is twice differentiable in an open interval containing the point x = c
and has a local minimum at the same point. Show that the function g(x) = ef(x) has a local
minimum at x = c.

Solutions

1.

1a. Applying the power rule to each summand, we find

d

dx
(x

2

3 + x−7) =
2

3
x− 1

3 − 7x−8.

2



1b. Applying the product rule, we find

d

dx
x sin x = sin x + x cos x.

1c. Applying the quotient rule, we find

d

dx

ex − e−x

ex + e−x
=

(ex + e−x)(ex + e−x) − (ex − e−x)(ex − e−x)

(ex + e−x)2
,

and though considerable simplification is possible, this form is sufficient for the exam.

1d. Proceeding with the chain rule, we set u = 2x + 1
x

and compute

d

dx
u2 =

d

du
u2du

dx
= 2u(2 − 1

x2
) = 2(2x +

1

x
)(2 − 1

x2
).

(This substitution does not need to be made explicitly.)

2. First,
h′(x) = f ′(x)eg(x) + f(x)eg(x)g′(x),

and so
h′(2) = f ′(2)eg(2) + f(2)eg(2)g′(2) = 7e0 + 4e03 = 7 + 12 = 19.

3. Method 1. Compute directly

f ′(x) = cos(
√

2x)
1

2
√

2x
2x ln 2 =

ln 2

2
cos(

√
2x)

√
2x,

and

f ′′(x) =
ln 2

2

(

− sin(
√

2x)
ln 2

2
2x + cos(

√
2x)

ln 2

2

√
2x

)

=(
ln 2

2
)2

(√
2x cos(

√
2x) − 2x sin(

√
2x).

Method 2. First, observe that
√

2x = (
√

2)x, which eliminates the need for a nested chain
rule. Now,

d

dx
sin((

√
2)x) = cos((

√
2)x)(

√
2)x ln

√
2,

and

d2

dx2
sin((

√
2)x) = − sin((

√
2)x)((

√
2)x ln

√
2)2 + cos((

√
2)x)((

√
2)x ln

√
2) ln

√
2

= (ln
√

2)2
(

cos((
√

2)x)(
√

2)x − sin((
√

2)x)2x
)

,

which is equivalent to the expression from Method 1.

4. We compute implicitly

d

dx
sin(xy) =

d

dx
x ⇒ cos(xy)

d

dx
(xy) = 1 ⇒ cos(xy)(y + x

dy

dx
) = 1.

3



Solving for dy

dx
, we find

dy

dx
=

1
cos(xy)

− y

x
.

At the point ( 1√
2
,
√

2π
4

), we have

dy

dx
=

1
cos(π

4
)
−

√
2π
4

1√
2

= 2 − π

2
.

The equation for the tangent line is

(y −
√

2π

4
) = (2 − π

2
)(x − 1√

2
).

5. We begin by computing the x-derivative of the entire equation,

y + x
dy

dx
− ey dy

dx
= 0.

Solving for dy

dx
, we obtain

dy

dx
= − y

x − ey
.

At this stage we can either compute a second derivative directly from this final expression
or take another derivative of our original equation. The former approach is the most direct,
and we find

d2y

dx2
= − (x − ey) dy

dx
− y(1 − ey dy

dx
)

(x − ey)2
= −

(x − ey)(− y

x−ey ) − y + yey(− y

x−ey )

(x − ey)2

=
2y(x − ey) + y2ey

(x − ey)3
.

Note. In case you’re curious, the second method would look like this:

dy

dx
+

dy

dx
+ x

d2y

dx2
− ey(

dy

dx
)2 − ey d2y

dx2
= 0,

so that
d2y

dx2
= −2 dy

dx
− ey( dy

dx
)2

x − ey
.

Finally, we substitute our expression for dy

dx
to find

d2y

dx2
= −

2(− y

x−ey ) − ey(− y

x−ey )2

(x − ey)
= 2

y

(x − ey)2
+ ey y2

(x − ey)3
=

2y(x − ey) + y2ey

(x − ey)3
,

giving the same result.

6. In this case, we are given that dr
dt

= −400, where r denotes the distance between the plane
and the tracking station. If we let x denote the horizontal distance between the plane and
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the tracking station, then what we are looking for is |dx
dt
|, the plane’s speed. In order to find

a relation between dx
dt

and dr
dt

, we begin by relating x and r. We have

x2 + 36 = r2.

Upon differentiation of this equation with respect to t, we find

2x
dx

dt
= 2r

dr

dt
.

When r = 10, we have x =
√

100 − 36 = 8, and therefore

2(8)
dx

dt
= 2(10)(−400) ⇒ dx

dt
= −8000

16
= −500.

The negative sign indicates that the plane is moving toward the tracking station, but since
the problem asks for speed, the correct answer is +500.

7. First, observe that what we know is dθ
dt

and what we would like to know is dA
dt

, where A
is the area of the triangle and θ is the angle between the sides of lengths 4 and 5. In order
to get a relationship between A and θ, we recall that the area of a triangle is

A =
1

2
bh,

where b is the length of the base of the triangle and h is the height of the triangle. If we
draw the triangle with the 5 cm side as the base (i.e., b = 5) and let h denote the triangle’s
height, then we immediately find the relation

sin θ =
h

4
⇒ h = 4 sin θ.

We can now write the area as

A =
1

2
(5)4 sin θ = 10 sin θ.

In order to get a relationship between dA
dt

and dθ
dt

, we take the derivative of each side of this
last expression with respect to t. We find

dA

dt
= 10 cos θ

dθ

dt
.

At θ = π
3

(60o), we have cos(π
3
) = 1

2
and consequently

dA

dt
= 10(

1

2
)(.06) = .3 cm2/s.

8. First,
f ′(x) = − sin x − cos x.
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Also, f(0) = 1 ⇒ f−1(1) = 0. We have, then,

df−1

dx
(1) =

1

f ′(f−1(1))
=

1

f ′(0)
=

1

−1
= −1.

9. For calculations like this it’s often convenient to set

θ = sin−1 2

3

(using θ because this is an angle), so that

sin θ =
2

3
.

(See Figure 1.)

θ

2

3

Figure 1: Figure for Problem 9 solution.

According to the Pythagorean Theorem, the adjacent sidelength is

b =
√

9 − 4 =
√

5.

In this way,

tan(sin−1 2

3
) = tan θ =

2√
5
.

10. Set f(x) = cos x and use the formula

df−1

dx
(x) =

1

f ′(f−1(x))
=

1

− sin(cos−1 x)
.

In order to evaluate cos−1 x, set θ = cos−1 x (we use θ because this is an angle) and note
that consequently

cos θ = x ⇒ sin θ =
√

1 − cos2 θ =
√

1 − x2.
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Notice here that since the range of cos−1 x is [0, π], we know that θ ∈ [0, π], and so we know
sin θ ≥ 0. This chooses the sign in front of

√
1 − cos2 θ. We finally have

1

− sin(cos−1 x)
= − 1√

1 − x2
.

11. If we take the natural logarithm of both sides, we have

ln y = lnxtan x = (tanx)(ln x).

Now differentiate each side with respect to x to obtain

1

y

dy

dx
= (sec2 x)(ln x) +

tan x

x
.

Multiplying this last expression by y = xtan x, we conclude

dy

dx
= xtan x((sec2 x)(ln x) +

tan x

x
).

12. We start with f(x) = ln x and use the linear approximation

f(x) = f(a) + f ′(x)(x − a),

where it is reasonable here to take a = 1. We find

f(x) ≈ ln 1 + 1(x − 1) = x − 1.

We can now compute
f(.99) ≈ .99 − 1 = −.01.

(The exact value, to four decimal places, is -.0101.)

13. First, the length l is given by the Pythagorean Theorem,

l =
√

32 + x2.

By linear approximation, we have

l(x + ∆x) − l(x) ≈ l′(x)∆x,

where |l(x + ∆x) − l(x)| is the absolute error, x = 4, ∆x = .05 and

l′(x) =
x√

x2 + 9
.

We have, then,

l′(4)(.05) =
4

5
(.05) = .04.

We conclude
l(4 ± .05) = 5 ± .04.
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14. First, the graph is given in Figure 2. The easiest way to graph a function like this is to
expand it out as follows:

f(x) =

{

3 + x, −3 ≤ x ≤ 0

3 − x, 0 ≤ x ≤ 1.

Each individual piece is easy to graph. The local minimizers are x = −3, 1 and the local
minima are 0, 2. The global minimizer is x = −3 and the global minimum is 0. The local
and global maximizer is x = 0 and the local and global maximum is 3.

−1−2−3

1

2

3

1

Figure 2: Figure for Problem 14 solution.

15. By the Mean Value Theorem, we know that there exists some value c ∈ (2, 5) so that

f ′(c) =
f(5) − f(2)

3
.

Since the largest possible value for f ′(c) on this interval is 4 and since the smallest possible
value for f ′(c) on this interval is 1, we have the inequality

1 ≤ f(5) − f(2)

3
≤ 4.

Multiplying this last inequality by 3, we find

3 ≤ f(5) − f(2) ≤ 12.

16a. First,

f ′(x) =
(1 + x)2x − x2

(1 + x)2
=

x2 + 2x

(1 + x)2
,
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and from this we can identify the critical points are x = −2,−1, 0. Plotting this on a
number line, we find that f is decreasing on [−2,−1)∪ (−1, 0] (note that the point where f
is undefined is excluded, but the other endpoints are included), and increasing on (−∞,−2]∪
[0, +∞).

16b. We compute

f ′′(x) =
(1 + x)2(2x + 2) − (x2 + 2x)2(1 + x)

(1 + x)4
=

2(x + 1)2 − 2(x2 + 2x)

(1 + x)3
=

2

(1 + x)3
.

The only possible point of inflection is x = −1, and plotting this on a number line we find
f is concave down on (−∞,−1) and concave up on (−1, +∞).

17. By our assumptions on f , we know f ′(c) = 0 and (by the first derivative test) f ′(x) < 0
for x < c (and close to c; i.e., f decreases down to the minimum) and f ′(x) > 0 for x > c (and
close to c) . We need to show that precisely the same two conditions hold for g(x) = ef(x).
We have

g′(x) = ef(x)f ′(x) = 0,

from which we see that
g′(c) = ef(c)f ′(c) = 0,

and also that g′(x) always has the same sign as g′(x). This means that for x near c we have
g′(x) < 0 for x < c and g′(x) > 0 for x > c, and so by the first derivative test g has a
minimum at x = c.

Note. There is a subtle problem in directly applying the second derivative test because f
can have a minimum with f ′′(c) = 0. (E.g., f(x) = x4 with c = 0.) In that case we would
find g′′(c) = 0, and this is not enough to conclude that x = c is a minimizer of g.
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