
M147 Practice Problems for Exam 3

Exam 3 will cover sections 5.3, 5.4, 5.5, 2.1, 2.2, 2.3, 5.6, 6.1, 6.2, and also integration by
substitution, which we used in Section 6.2. Calculators will not be allowed on the exam.
The first ten problems on the exam will be multiple choice. Work will not be checked on
these problems, so you will need to take care in marking your solutions. For the remaining
problems unjustified answers will not receive credit. On the exam you will be given the
following identities:

n
∑

k=1

k =
n(n + 1)

2
;

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
;

n
∑

k=1

k3 =
(n(n + 1)

2

)2

.

1. Let

f(x) =
e−x

x − 1
, x 6= 1.

1a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

1b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which it is concave down.

1c. Determine the boundary behavior of f by computing limits as x → ±∞.

1d. Use your information from Parts a-c to sketch a graph of this function.

2. A long rectangular sheet of metal, 12 inches wide, is to be made into a rain gutter by
turning up two sides at right angles to the sheet. How many inches should be turned up to
give the gutter its greatest capacity?

3. A piece of wire 10 meters long is cut into two pieces. One piece is bent into a square and
the other is bent into an equilateral triangle. How should the wire be cut so that the total
area enclosed is minimized? How should the wire be cut so that the total area is maximized?

4. Compute the following limits.

4a.

lim
x→0

ex − 1

x
.

4b.
lim

x→∞
(x −

√
x2 − 1).

4c.
lim

x→∞
(

x

x + 1
)x.

5. Write down a general expression for the sequence with terms

3

2
,−5

8
,

7

18
,− 9

32
,
11

50
, . . .
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6. Compute the limit
lim

n→∞
n

1

n .

7. Find all fixed points for the recursion

an+1 =
1

2
an(

1

2
− an),

and use the method of cobwebbing to determine which limit will be achieved from the starting
value a0 = −1.

8. Find all fixed points for the recursion

xt+1 = xte
1−xt ,

and determine whether each is unstable or asymptotically stable.

9. The discrete logistic population model is

Nt+1 = Nt + RNt(1 − Nt

K
).

Take R = 1 and K = 10 and show that one drawback of this model is that it can start with
a positive population N0 > 0 and return a negative population N1.

10. Use a geometric argument to evaluate the integral

∫ 1

−1

|x|dx.

11. Use the method of Riemann sums to evaluate

∫ 4

1

1 − x2dx.

12. Express the integral
∫ 2

0

√
1 + sin xdx

as the limit of a Riemann sum. Be sure to define all quantities that appear in your expression.

13. Determine whether or not the Fundamental Theorem of Calculus can be applied to the
function

f(x) =

{

x 0 ≤ x ≤ 1

2 − x 1 < x ≤ 2
,

on the interval [0, 2]. If so, find the anti-derivative F (x) and use it to compute

∫ 2

0

f(x)dx.
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14. Compute

d

dx

∫

x
2+1

cos x

e−x2

dx.

15. Evaluate the following indefinite integrals.

15a.
∫

cos(2x − 1)dx.

15b.
∫

x

x2 + 1
dx.

16. Evaluate the following definite integrals.

16a.
∫

√
π

0

x sin(x2)dx.

16b.
∫

e

1

√
ln x

x
dx.

16c.
∫

π

−π

2

sin |x|dx.

Solutions.

1a. Compute

f ′(x) = − xe−x

(x − 1)2
,

and observe that the critical points are x = 0, 1. We see that f is increasing on (−∞, 0] and
decreasing on [0, 1) ∪ (1,∞). (We omit x = 1 because f isn’t defined there.)

1b. Compute

f ′′(x) =
e−x(x2 + 1)

(x − 1)3
,

and observe that the only possible inflection point is x = 1. We see that f(x) is concave
down on (−∞, 1) and concave up on (1,∞).

1c. For the boundary behavior, we have

lim
x→−∞

e−x

x − 1
= −∞

lim
x→+∞

e−x

x − 1
= 0.
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1d. In order to anchor the plot, we evaluate f at the critical points, the possible inflection
points and the endpoints. We have

f(0) = − 1

lim
x→1−

e−x

x − 1
= −∞

lim
x→1+

e−x

x − 1
= + ∞.

The boundary behavior was obtained in Part c. Here’s a sketch:

1

−1

Figure 1: Figure for Problem 1.

2. Let x denote the width of sheet to be turned up on one side and let y denote the width
of sheet left flat. If the length of the sheet is L then the volume is

V = xyL,

where y can be eliminated by the relation y = 12 − 2x. (For this problem it seems fairly
natural to avoid bringing up the variable y, but I’ve used it here for consistency with our
standard process.) In this way the function we would like to maximize is

V (x) = x(12 − 2x)L, 0 ≤ x ≤ 6.

We find the critical points by computing

dV

dx
= (12 − 4x)L = 0 ⇒ x = 3.
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Evaluating

V (0) = 0

V (3) = 18

V (6) = 0,

we conclude that the maximum capacity occurs when x = 3 inches are turned up on either
side.

3. Let x be the length of each side of the square, and let y be the length of each side of the
equilateral triangle. Then the total length of wire is

10 = 4x + 3y,

while the total area is

A = area of square + area of triangle = x2 +

√
3

4
y2.

(You can derive the area formula for an equilateral triangle from the formula 1
2
bh and either

the sidelengths for a 30-60-90 triangle or the Pythagorean theorem. See figure.)

y y

y y

22

3

2
y

Figure 2: Figure for Problem 3.

Solving our constraint for y, we have

y =
10

3
− 4

3
x,

so that

A(x) = x2 +

√
3

4
(
10

3
− 4

3
x)2, 0 ≤ x ≤ 10

4
.
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Proceeding as usual, we compute

A′(x) = 2x +

√
3

2
(
10

3
− 4

3
x)(−4

3
) ⇒ x(2 +

8
√

3

9
) =

20
√

3

9
.

We conclude that

x =
20
√

3

18 + 8
√

3
=

10
√

3

9 + 4
√

3
.

From our expression for A′(x) we see that A′(x) < 0 for x < 10
√

3
9+4

√
3
, while A′(x) > 0 for

x < 10
√

3
9+4

√
3
. We conclude that A(x) decreases for all x to the left of this point and increases

for all x to the right of it, and is consequently a global minimum. Notice particularly that

0 <
10
√

3

9 + 4
√

3
<

10
√

3

4
√

3
=

10

4
,

so this value of x is on our domain 0 ≤ x ≤ 10
4
. This says that the area is minimized if the

length of wire taken for the square is

4x =
40
√

3

9 + 4
√

3
.

In order to find the global maximum, we must check A(x) at the two endpoints. We have

A(0) =
100

√
3

36

A(
10

4
) =

100

16
.

Notice that
100

√
3

36
<

100 · 2
36

=
100

18
<

100

16
,

so A(10
4
) is larger, and this corresponds with putting all of the wire into the square.

4a.

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= 1.

4b.

lim
x→∞

(x −
√

x2 − 1) = lim
x→∞

x(1 −
√

1 − 1

x2
) = lim

x→∞

1 −
√

1 − 1
x2

1
x

.

We can now apply l’Hospital’s rule to find that this limit is

lim
x→∞

−1
2
(1 − 1

x2 )
− 1

2 ( 2
x3 )

− 1
x2

= 0.

4c.
lim

x→∞
(

x

x + 1
)x = lim

x→∞
eln( x

x+1
)x

= lim
x→∞

ex ln( x

x+1
) = elimx→∞ x ln( x

x+1
).
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We compute the limit in the exponent as

lim
x→∞

ln( x

x+1
)

1
x

= lim
x→∞

ln x − ln(x + 1)
1
x

= lim
x→∞

1
x
− 1

x+1

− 1
x2

= lim
x→∞

1
x(x+1)

− 1
x2

= lim
x→∞

− x2

x2 + x
= −1.

We conclude
lim
x→∞

(
x

x + 1
)x = e−1.

Note: It’s slicker—but for our purposes less instructive—to simply notice that this is the
inverse of the limit

e = lim
x→∞

(1 +
1

x
)x.

5. First, we get the sign right with (−1)n+1, n = 1, 2, . . . , and we observe that the numerator
is 2n + 1, for n = 1, 2, . . . . The easiest way to understand the denominator is to factor out
the common factor 2 (a useful trick in general). We find

an = (−1)n+12n + 1

2n2
, n = 1, 2, . . .

6. The important thing to remember here is simply that you compute this sort of limit
precisely as with limits in x. More precisely,

lim
n→∞

n
1

n = lim
x→∞

x
1

x .

For the limit in x we can apply l’Hospital’s Rule:

lim
x→∞

x
1

x = lim
x→∞

eln x
1
x = elimx→∞

1

x
ln x = elimx→∞

1

x = e0 = 1.

7. First, the fixed point equation is

a =
1

2
a(

1

2
− a) =

1

4
a − 1

2
a2,

so that the fixed points are

3

4
a +

1

2
a2 = a(

3

4
+

1

2
a) = 0 ⇒ a = 0,−3

2
.

For the cobwebbing, we can plot f(a) = 1
4
a− 1

2
a2 = a(1

4
− 1

2
a) by noticing that it’s a parabola

opening downward with x-intercepts at a = 0 and a = 1
2
, and therefore has a maximum value

at (the midpoint) 1
4

of 1
4
(1

4
− 1

2
1
4
) = 1

4
1
8

= 1
32

. We find that for a0 = −1 (see the figure)

lim
n→∞

an = 0.

8. First, in order to find the fixed points we solve

x = xe1−x ⇒ x(1 − e1−x) = 0,
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−1/2−1−3/2 1/2

−3/2

g(a)=a

−1/2

Figure 3: Figure for Problem 7.

from which we have the fixed points
x = 0, 1.

In order to evaluate the stability of these points, we set

f(x) = xe1−x,

and compute
f ′(x) = e1−x + xe1−x(−1) = e1−x(1 − x).

We have:

f ′(0) = e ⇒ |f ′(0)| > 1 ⇒ x = 0 is unstable

f ′(1) = 0 ⇒ |f ′(0)| < 1 ⇒ x = 1 is asymptotically stable

9. First, for R = 1 and K = 10 the model becomes

Nt+1 = Nt + Nt(1 − Nt

10
).

We see that if Nt is large the second term will be negative, and as a convenient value we can
take N0 = 50. We find

N1 = 50 + 50(1 − 5) = 50 − 200 = −150.

10. The graph of the function f(x) = |x| looks like a V on [−1, 1], and the area under the
curve consists of two triangles with equal areas. Each triangle has baselength 1 and height
1, and so the area of each is 1

2
. We conclude

∫ 1

−1

|x|dx = 1.
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11. In this case ∆x = b−a

n
= 4−1

n
= 3

n
, and we use right endpoints xk = 1 + k∆x. We have

An =

n
∑

k=1

[1 − (1 +
3k

n
)2]

3

n
=

n
∑

k=1

[1 − (1 + 6
k

n
+ 9

k2

n2
)]

3

n

=

n
∑

k=1

−18k

n2
− 27k2

n3
= −18

n2

n
∑

k=1

k − 27

n3

n
∑

k=1

k2

= − 18

n2

n(n + 1)

2
− 27

n3

n(n + 1)(2n + 1)

6
.

We conclude
lim

n→∞
An = −9 − 9 = −18.

12. The Riemann sum is

∫ 2

0

√
1 + sin xdx = lim

‖P‖→0

n
∑

k=1

√

1 + sin ck△xk,

where P is a partition of the interval [0, 2] with points P = [x0, x1, ...., xn], ‖P‖ is the norm
of P (‖P‖ = maxk ∆xk), ∆xk = xk − xk−1, and ck ∈ [xk−1, xk] for each k = 1, ..., n.

13. This function is continuous on the interval [0, 2] and so FTC applies. In order to compute
the anti-derivative, we first observe that for x ∈ [0, 1] we have

F (x) =

∫

x

0

ydy =
x2

2
,

as expected. For x ∈ [1, 2] we must keep in mind that we have

F (x) =

∫

x

0

f(y)dy =

∫ 1

0

ydy +

∫

x

1

2 − ydy =
1

2
+ (2x − x2

2
) − 3

2
= (2x − x2

2
) − 1.

That is,

F (x) =

{

x
2

2
0 ≤ x ≤ 1

(2x − x2

2
) − 1 1 < x ≤ 2

.

Applying FTC, we conclude

∫ 2

0

f(x)dx = F (2) − F (0) = 1.

(This can easily be verified by a geometric argument.)

14. According to Leibniz’ rule, we have

d

dx

∫

x2+1

cos x

e−x2

dx = e−(x2+1)22x − e− cos2 x(− sin x).
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15a. Use the substitution u = 2x − 1, so that du

dx
= 2. The integral becomes

1

2

∫

cos udu =
1

2
sin u + C =

1

2
sin(2x − 1) + C.

15b. Use the substitution u = x2 + 1, so that du

dx
= 2x. The integral becomes

∫

x

u

du

2x
=

1

2

∫

du

u
=

1

2
ln |u| + C =

1

2
ln |x2 + 1| + C,

where since x2 + 1 is always positive the absolute value can be dropped.

16a. Use the substitution u = x2, so that du

dx
= 2x. The integral becomes

∫

π

0

x sin(u)
du

2x
=

1

2

∫

π

0

sin udu = −1

2
cos u

∣

∣

∣

π

0
= 1.

16b. Use the substitution u = ln x, so that du

dx
= 1

x
. The integral becomes

∫

e

1

√
u

x
xdu =

∫ 1

0

u
1

2 du =
u

3

2

3
2

∣

∣

∣

1

0
=

2

3
.

16c. We proceed by writing sin |x| as

sin |x| =

{

− sin x, −π

2
≤ x ≤ 0

sin x, 0 < x ≤ π
.

In this way, we can compute

∫

π

−π

2

sin |x|dx = −
∫ 0

−π

2

sin xdx +

∫

π

0

sin xdx = cos x
∣

∣

∣

0

−π

2

− cos x
∣

∣

∣

π

0
= 1 − (−1 − 1) = 3.
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