
M147 Practice Problems for Final Exam

The final exam for M147 will be comprehensive, covering all sections from the course. Calcu-
lators will not be allowed on the exam. The first ten problems on the exam will be multiple
choice. Work will not be checked on these problems, so you will need to take care in marking
your solutions. For the remaining problems unjustified answers will not receive credit. On
the exam you will be given the following identities:

n
∑

k=1

k =
n(n + 1)

2
;

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
;

n
∑

k=1

k3 =
(n(n + 1)

2

)2

.

1. Compute each of the following limits:

1a.
lim

x→2−

x

x2 + 3x − 10
.

1b.
lim
x→0

xesin( 1

x
).

1c.

lim
x→0

x sin x

(1 − ex)2
.

1d.
lim

x→∞
[(x + 1)1/3 − x1/3].

1e. The geometric mean of two positive real numbers a and b is defined as
√

ab. Show that

√
ab = lim

x→∞
(
a1/x + b1/x

2
)x.

2a. Find a value for c that makes the given function continuous at all points.

f(x) =

{

sinx
x

, x 6= 0

c, x = 0
.

2b. Determine whether or not your function from (2a) is differentiable at x = 0. If it is
differentiable at this point, compute its derivative there.

3. Compute the derivative of each of the following functions.

3a.

f(x) =
1 + sin2 x

x cos x
.

3b.
f(x) = tan−1(2

√
x2+1).
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4. Find an equation for the line that is tangent to the graph of

f(x) =
xex

1 + x2

at the point x = 0.

5. Suppose the angle of elevation of the Sun is decreasing at a rate of .25 rad/hr. How fast
is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun
is π

6
?

6. Suppose f(x) is continuous on the interval [a, b] and differentiable on the interval (a, b).
Show that if f ′(x) = x for all x ∈ (a, b), then there exists some value c ∈ (0, 1) so that

f(b) − f(a) = c(b − a).

7. Let
f(x) = x1/3(x + 3)2/3, −∞ < x < ∞.

7a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

7b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which it is concave down.

7c. Evaluate f at the critical points and at the possible inflection points, and determine the
boundary behavior of f by computing limits as x → ±∞.

7d. Use your information from Parts a-c to sketch a graph of this function.

8. Find the side-lengths that maximize the area of an isosceles triangle with given perimeter
P = 10. (An isosceles triangle is a triangle with two sidelengths equal.)

9. Find all fixed points for the recursion equation

an+1 =
3

4
an +

1

an
.

Sketch a graph of the function f(a) = 3
4
a+ 1

a
, and use the method of cobwebbing to determine

whether or not one of these fixed points will be achieved from the starting value a0 = 1
2
.

10. Find all fixed points for the recursion equation

xt+1 = 1 +
2

xt

and determine whether or not each is unstable or asymptotically stable.

11. Suppose a function f(x) is continuous on the interval [0, 1] and that you are given the
values in Table 1:

Use an appropriate Riemann sum to approximate
∫ 1

0
f(x)dx.
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x f(x)

1/8 1/2
3/8 1/3
5/8 −1
7/8 −2

Table 1: Values of f(x) for Problem 11.

12. Use the method of Riemann sums to evaluate
∫ 2

1

x + x2dx.

13. Evaluate the following indefinite integrals.

13a.
∫

ex cos(ex)dx.

13b.
∫

x√
1 + x

dx

13c.
∫

cos−1 xdx.

14. Evaluate the following definite integrals.

14a.
∫ 3

1

x2

√
1 + x3

dx.

14b.
∫ π

4

0

x sec2 xdx.

15. Evaluate the following indefinite integral

∫

sin3 x cos x√
1 + sin2 x

dx.

16. Find the area of the region bounded by the graphs of y = x4 and y = 20 − x2.

17. Find the total area between the curves y = x2 and y = 2 − x for x ∈ [0, 2].

18. Find the volume obtained when the region between the graphs of y = ex and y = e−x,
x ∈ [0, 2], is rotated about the x-axis.

19. Find the volume of the solid obtained by rotating about the x-axis the area between the
graph of f(x) =

√
x and the x-axis for x ∈ [0, 1].
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20. Find the volume obtained by rotating the region between y = 2 and y =
√

x for x ∈ [0, 4]
about the x-axis.

21. Find the volume obtained by rotating the region bounded by the curves y2 = x and
y = x

2
about the y-axis.

22. Compute the average value of the function

f(x) = x +
1

x

for x ∈ [1, 3].

23. Determine the length of the graph of f(x) = x
3

2 + 1 for x ∈ [0, 4].

Solutions

1a. We have
lim

x→2−

x

x2 + 3x − 10
= lim

x→2−

x

(x − 2)(x + 5)
= −∞,

where we have observed that x − 2 is negative for x to the left of 2.

1b. We apply the Squeeze Theorem in this case, using the inequality

−|x|e ≤ xesin( 1

x
) ≤ |x|e.

We have
lim
x→0

−|x|e = lim
x→0

|x|e = 0,

and so according to the Squeeze Theorem

lim
x→0

xesin( 1

x
) = 0.

1c. We apply L’Hospital’s Rule twice,

lim
x→0

x sin x

(1 − ex)2
= lim

x→0

sin x + x cos x

2(1 − ex)(−ex)
= lim

x→0

sin x + x cos x

2e2x − 2ex

= lim
x→0

2 cosx − x sin x

4e2x − 2ex
= 1.

1d. This limit has the indeterminate form ∞ −∞, so the first thing we do is rearrange it
into an expression with the form 0

0
. We have

lim
x→∞

(x + 1)1/3 − x1/3 = lim
x→∞

x1/3[(1 +
1

x
)1/3 − 1]

= lim
x→∞

(1 + 1
x
)1/3 − 1

x−1/3
= lim

x→∞

1
3
(1 + 1

x
)−2/3(− 1

x2 )

−1
3
x−4/3

= lim
x→∞

(1 +
1

x
)−2/3 1

x2/3
= 0.
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1e. We observe that this limit has the general form 1∞, and so we can apply L’Hospital’s
rule. We have

lim
x→∞

(
a1/x + b1/x

2
)x = lim

x→∞
eln(a1/x

+b1/x

2
)x

= lim
x→∞

ex ln(a1/x
+b1/x

2
)

= elimx→∞ x ln(a1/x
+b1/x

2
).

In order to compute this limit, we write

lim
x→∞

x ln(
a1/x + b1/x

2
) = lim

x→∞

ln(a1/x+b1/x

2
)

1
x

= lim
x→∞

2
a1/x+b1/x (1

2
a1/x(ln a)(− 1

x2 ) + 1
2
b1/x(ln b)(− 1

x2 ))

− 1
x2

= lim
x→∞

1

a1/x + b1/x
(a1/x ln a + b1/x ln b) =

1

2
(ln a + ln b),

where in this last step we have used that 1
x
→ 0 as x → ∞. The limit is

e
1

2
(ln a+ln b) = e

1

2
ln(ab) = eln(ab)1/2

=
√

ab.

2a. Since

lim
x→0

sin x

x
= 1,

we can make this function continuous at all points by choosing c = 1.

2b. Since the function is separately defined at x = 0, we must proceed from the definition
of differentiation. We compute

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

sinh
h

− 1

h

= lim
h→0

sin h − h

h2
= lim

h→0

cos h − 1

2h
= lim

h→0

− sin h

2
= 0,

where the last two steps both used L’Hospital’s rule. We conclude that this function is
differentiable at x = 0, and that f ′(0) = 0.

3a. We combine the quotient rule with the product rule to compute

f ′(x) =
x cos x(2 sin x cos x) − (1 + sin2 x)(cos x − x sin x)

(x cos x)2

=
2x sin x cos2 x − cos x + x sin x − sin2 x cos x + x sin3 x

(x cos x)2
.

3b. This is a nested chain rule. We have

f ′(x) =
1

1 + 22
√

x2+1
2
√

x2+1 x ln 2√
x2 + 1

.

Notice that we can simplify 22
√

x2+1 as 4
√

x2+1.
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4. First,

f ′(x) =
(1 + x2)(ex + xex) − xex(2x)

(1 + x2)2
⇒ f ′(0) = 1,

which is the slope of the tangent line. Using f(0) = 0 and the general point-slope form
y − f(a) = f ′(a)(x − a), we conclude

y = x.

5. First, observe that what we know is dθ
dt

= −.25 rad/hr and what we want to know is dx
dt

,
where x is the length of the shadow (see the diagram in Figure 1).

Sun

400ft

x

θ

Figure 1: Figure for Problem 5.

We see that the relation between θ and x is

tan θ =
400

x
.

Upon taking a derivative of this equation with respect to t, we obtain

sec2 θ
dθ

dt
= −400

x2

dx

dt
,

where we can now fix θ = π
6
, so that sec2 θ = 1

cos2 π
6

= 1
3

4

= 4
3
, while x = 400

tan π
6

= 400
√

3.

Combining these observations, we have

dx

dt
= − x2

400

dθ

dt
sec2 π

6
= −3(400)(−.25)

4

3
= +400 ft/hr.

6. According to the Mean Value Theorem there exists some value c ∈ (a, b) so that

f(b) − f(a)

b − a
= f ′(c).

6



In this case f ′(c) = c, and so we conclude

f(b) − f(a)

b − a
= c ⇒ f(b) − f(a) = c(b − a).

7a. The derivative of f(x) is

f ′(x) =
x + 1

x2/3(x + 3)1/3
,

from which we find the critical points x = −3,−1, 0. We see that f is increasing on
(−∞,−3] ∪ [−1,∞) and decreasing on [−3,−1].

7b. The second derivative of f(x) is

f ′′(x) = − 2

x5/3(x + 3)4/3
,

from which we find that the possible inflection points are x = 0,−3. We see that f is concave
up on (−∞,−3) ∪ (−3, 0) and concave down on (0,∞).

7c. Evaluating f at the critical points, possible inflection points, and at the endpoints, we
have:

f(−3) = 0

f(−1) = − 22/3

f(0) = 0

lim
x→−∞

x1/3(x + 3)2/3 = −∞

lim
x→∞

x1/3(x + 3)2/3 = + ∞.

7d. Your plot should look something like Figure 2.

8. Let y denote the length of the sides of equal length, and let x denote the length of the
side between them. Then the perimeter is

10 = 2y + x ⇒ y = 5 − 1

2
x.

By the Pythagorean Theorem, the height of such a triangle is h =
√

y2 − 1
4
x2, and so the

area to be maximized is

A =
1

2
x

√

y2 − 1

4
x2 ⇒ A(x) =

1

2
x

√

(5 − 1

2
x)2 − 1

4
x2 =

1

2
x
√

25 − 5x, 0 ≤ x ≤ 5.

(The upper limit of 5 is clear both because a value of x larger than this would put a neg-
ative number under the radical, and because the single side cannot be more than half the
perimeter.) In order to maximize A(x), we compute

A′(x) =
25
2
− 15

4
x√

25 − 5x
.
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−1−2−3

Figure 2: Figure for Problem 7.

The critical values are x = 10
3
, 5, where we observe that x = 5 is also a boundary value.

Checking A(x) at the critical and boundary values, we find

A(0) = 0

A(
10

3
) =

5

3

√

25

3
=

25

3
√

3

A(5) = 0.

We conclude that the maximum area is 25
3
√

3
and the side-lengths are x = 10

3
and y =

5 − 1
2
(10

3
) = 10

3
. That is, an equilateral triangle.

9. The fixed points solve

a =
3

4
a +

1

a
⇒ 1

4
a =

1

a
⇒ a2 = 4.

We conclude that the fixed points are ±2. In order to use cobwebbing, we must sketch a
graph of the function

f(a) =
3

4
a +

1

a
.

First, setting

f ′(a) =
3

4
− 1

a2
= 0,

we find that the critical points are a = ± 2√
3
, 0. The function is increasing on (−∞,− 2√

3
] ∪

[ 2√
3
,∞) and decreasing on [− 2√

3
, 0) ∩ (0, 2√

3
]. Next,

f ′′(a) =
2

a3
,
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and so the only possible point of inflection is a = 0. The function is concave down on (−∞, 0)
and concave up on (0,∞). Finally,

lim
a→−∞

(
3

4
a +

1

a
) = −∞

f(− 2√
3
) = −

√
3

lim
x→0−

(
3

4
a +

1

a
) = −∞

lim
x→0+

(
3

4
a +

1

a
) = + ∞

f(
2√
3
) =

√
3

lim
a→−∞

(
3

4
a +

1

a
) =∞

The plot of this function and the cobwebbing are depicted below in Figure 3. We conclude

lim
n→∞

an = 2.

1

2

−1

−2

1 2−1−2

3

19/8

1/2 2/ 3

Figure 3: Figure for Problem 9.

10. In order to find the fixed points, we solve

x = 1 +
2

x
,

which becomes (upon multiplication by x)

x2 − x − 2 = (x − 2)(x + 1) = 0,
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and the fixed points are x = −1, 2. In order to check for stability we set f(x) = 1 + 2
x
, and

compute

f ′(x) = − 2

x2
.

We have

f ′(−1) = − 2 ⇒ −1 is unstable

f ′(2) = − 1

2
⇒ 2 is stable.

11. Since no value for f(x) is given at either x = 0 or at x = 1, we cannot take a Riemann sum
with left or right endpoints. We see, however, that the values of x are precisely the midpoints
of the subintervals in the partition P = [0, 1

4
, 1

2
, 3

4
, 1]. The most reasonable Riemann sum is

4
∑

k=1

f(ck)∆xk,

where the ck are the interval midpoints. That is,

4
∑

k=1

f(ck)∆xk = (
1

2
+

1

3
− 1 − 2)

1

4
= −13

24
.

12. In this case △x = b−a
n

= 2−1
n

= 1
n
, and we use right endpoints xk = 1 + k△x. We have

An =
n

∑

k=1

[(1 + k∆x) + (1 + k∆x)2]∆x

=
n

∑

k=1

[(1 +
k

n
) + (1 + 2

k

n
+

k2

n2
)]

1

n

=
[ 1

n

n
∑

k=1

1 +
1

n2

n
∑

k=1

k +
1

n

n
∑

k=1

1 +
2

n2

n
∑

k=1

k +
1

n3

n
∑

k=1

k2
]

=
[

1 +
1

n2

n(n + 1)

2
+ 1 +

2

n2

n(n + 1)

2
+

1

n3

n(n + 1)(2n + 1)

6

]

.

Finally,

lim
n→∞

An = 1 +
1

2
+ 1 + 1 +

1

3
=

23

6
.

13a. Using the substitution u = ex, for which du = exdx, we find

∫

cos udu = sin u + C = sin(ex) + C.
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13b. We make the substitution u = 1 + x, with du = dx, and obtain

∫

x√
u
du =

∫

u − 1√
u

du =

∫

u1/2 − u−1/2du

=
u3/2

3/2
− u1/2

1/2
+ C =

2

3
(1 + x)3/2 − 2(1 + x)1/2 + C

= (1 + x)1/2(
2

3
x − 4

3
) + C.

13c. In this case, integrate by parts with u = cos−1 x and dv = dx, for which we have
du = − 1√

1−x2
dx and v = x. The integral becomes

x cos−1 x +

∫

x√
1 − x2

dx.

For the remaining integral, we use fast substitution (since u has already been used) to obtain

x cos−1 x −
√

1 − x2 + C.

14a. We make the substitution u = 1 + x3 (or alternatively use fast substitution), so that
du = 3x2dx, and the integral becomes

∫ 28

2

x2

√
u

du

3x2
=

1

3

∫ 28

2

u−1/2du =
1

3

u1/2

1/2

∣

∣

∣

28

2
=

2

3
[
√

28 −
√

2].

14b. We integrate by parts, setting

u = x dv = sec2 xdx

du = dx v = tanx.

We obtain

∫ π
4

0

x sec2 xdx =x tan x
∣

∣

∣

π
4

0
−

∫ π
4

0

tan xdx

=
π

4
+ ln | cos x|

∣

∣

∣

π
4

0
=

π

4
+ ln(

√
2

2
).

15. We make the substitution u = 1 + sin2 x, with du = 2 sin x cos xdx, and we find

∫

sin3 x cos x√
u

du

2 sin x cos x
=

1

2

∫

sin2 x√
u

du.

At this point we observe that sin2 x = u − 1, so we have

1

2

∫

u − 1√
u

du =
1

2

∫

u1/2 − u−1/2du =
1

2
[
u3/2

3/2
− u1/2

1/2
] =

1

3
(1 + sin2 x)3/2 − (1 + sin2 x)1/2 + C.
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16. First, we locate the points of intersection by solving

x4 = 20 − x2 ⇒ x4 + x2 − 20 = 0.

In general, fourth order equations are difficult to solve algebraically, but this is really a
second order equation in the variable x2, and it factors as

(x2 − 4)(x2 + 5) = 0,

so that the real roots are x = ±2. We observe that the upper graph is always y = 20 − x2,
and also take advantage of symmetry to compute the area as

A = 2

∫ 2

0

(20 − x2) − x4dx = 2[20x − x3

3
− x5

5
]20 = 2[40 − 8

3
− 32

5
] =

928

15
.

17. Plotting these two curves together, we can see that they intersect at x = 1, and that for
x < 1, y = 2 − x is larger, while for x > 1, y = x2 is larger. The area between the curves is

A =

∫ 1

0

(2 − x) − x2dx +

∫ 2

1

x2 − (2 − x)dx

=(2x − x2

2
− x3

3
)
∣

∣

∣

1

0
+ (

x3

3
− 2x +

x2

2
)
∣

∣

∣

2

1

=3.

18. We observe that the graph of y = ex is always above the graph of y = e−x on [0, 2], and
so according to the method of washers,

V =π

∫ 2

0

(ex)2 − (e−x)2dx = π

∫ 2

0

e2x − e−2xdx

=
π

2
[e2x + e−2x]

∣

∣

∣

2

0
=

π

2
[e4 + e−4 − 2],

where in this case we used fast substitution.

19. Since the object is being created by rotation, the cross section at each point x is a circle
with radius f(x). The area of the cross section at point x is A(x) = πf(x)2 = πx. Recalling
that our volume formula is

V =

∫ b

a

A(x)dx,

we compute

V =

∫ 1

0

πxdx = π
1

2
x2

∣

∣

∣

1

0
=

π

2
.

20. In this case, we use the method of washers, for which we have

V = π

∫ 4

0

f(x)2 − g(x)2dx

= π

∫ 4

0

22 − (
√

x)2dx = π
[

4x − x2

2

]4

0

= 8π.
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21. First, we find the points at which these curves intersect by solving

(
x

2
)2 = x ⇒ x2

4
− x = 0 ⇒ x(

x

4
− 1) = 0 ⇒ x = 0, 4.

The points of intersection are (0, 0) and (4, 2). If we rotate the region between these curves
about the y-axis the line x = 2y describes the outer radius while the parabola x = y2

describes the inner radius. The volume is

V = π

∫ 2

0

(2y)2 − (y2)2dy = π

∫ 2

0

4y2 − y4dy = π[
4

3
y3 − 1

5
y5]20 = π[

32

3
− 32

5
] =

64π

15
.

22. We compute

favg =
1

2

∫ 3

1

x + x−1dx =
1

2
[
1

2
x2 + ln |x|]

∣

∣

∣

3

1
=

1

2
[
9

2
+ ln 3] − 1

2
[
1

2
] = 2 + ln

√
3.

23. First, observe that

f ′(x) =
3

2
x

1

2 .

The formula for arclength is

L =

∫ b

a

√

1 + f ′(x)2dx,

so we have

L =

∫ 4

0

√

1 +
9

4
xdx.

We carry out this integral with substitution, setting u = 1+ 9
4
x so that du

dx
= 9

4
. The integral

becomes

L =

∫ 10

1

u
1

2

4

9
du =

4

9

u
3

2

3
2

∣

∣

∣

10

1
=

8

27
(10

3

2 − 1).
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