Math 141 Spring 2006 @ Heather Ramsey Page 1

Math 141 - Week in Review #1

.7 Section 1.2
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Point-Slope Form: y —y; = m(x - x;), where m is slope and (x;,y1) is any point on the line

Slope-Intercept Form: y = mx+b

General Form: Ax+By+C=0

Parallel Lines - Two distinct lines are parallel if and only if ther slopes are equal or their slopes are both undefined.

Perpendicular Lines - slopes are opposite (or negative) reciprocals of each other

Equation of a Vertical Line: x=a

Equation of a Horizontal Line: y = b

Section 1.3

o Total Cost Function: C(x) = cx+ F where ¢ = production cost per unit, F = fixed cost, and x = number of units
produced

Revenue Function: R(x) = sx where s = selling price per unit and x = number of units sold

Profit Function: P(x) = R(x) — C(x)

For Demand and Supply Functions: x = quantity demanded or supplied and y = unit price

Demand equations have negative slope.

Supply equations have positive slope.

Section 1.4

» Break-even Point: the point {xo,yo) where revenue equals cost, i.e., R(x) = C{x)
' xp = break-even quantity

vp = break-even revenue

* Market Equilibrium: occurs when the quantity demanded equals the quantity supplied (i.e., demand = supply)

Section 1.5

o Equation for the least-squares regression line - computed in your calculator using the command LinReg(ax-+b)
Ly, 12,1
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L. Find the equation of the line that passes through the point (—2,5) and
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) is perpendicular to the x-axis.
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2. Let Ly be the line that passes through the points (7,2) and (-3, —1) and let L, be the line that passes through the
points (5, -4} and (—2,6). Find the value of z so that
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3. A local pool had 150 visitors on a day when the outside temperature reached a high of 98°F, but when the high |
dropped to 83°F, only 96 visitors came. 3 . ’FC‘") piars ﬂ & {umﬂ-’ﬁ}‘?ﬂ ﬁ,@ X

(a) Assuming a linear relationship, find an equation that gives the number of visitors as a function of the high
temperature for the day.

X
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(b) According to your answer in part (a), if the high temperature drops by 7°F, what happens to the number of

visitors at the pool that day? Va = 3 by — 2.
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(¢} According to your answer in part (a), if 15 more peop‘% visit tge pool on one day th
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how does the temperature on that day compare GF.the temperature the day before?
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(e} Does this mathematical model make sense for any valtjzlfﬁx?
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4. A car is purchased for $35,000, and its value depreciates to $21,500 in just three years.

e \
(a) If we assume that the car depreciates in value at a constant rate each year, find thfg&:fhdepreciaﬁon,
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(b) Find a function that models the value of the car at time r.
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(c) According to your model, when will the car be worth $10,0007
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v 3. RB, Inc. incurs a production cost of $20 for each pair of rollerblades it makes and then sells each pair for $75. If
< “‘tt:",xl the company has a total cost of $5,800 when no pairs of rollerblades are made, what is RB, Inc.’s break-even point?
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6. Acme, Inc. loses $3,000 per month when 75 gizmos are produced and sold per month. acle wof i S0 e

Llopad o “—dﬁ(. &
(a) Ifeach gizmo costs $50 to produce and then sells for $80, find the total cost, revenue, and profit \j

Acme, Inc.’s gizmo sales. functions for
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(b} What is the profit (or loss) associated with producing and selling 150 gizmos?

X= 150 Fad S0

P50 = DO (I50) -5280

= 4500 -5259
¢ () = — 75D

(c) What does the slope of the total cost function represent?

(XY =50% + 5250
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7. When a movie theater charges $5 per ticket, an average of 750 tickets are sold per day during the week. When the

theater increases each ticket price by $2, 150 fewer tickets are sold.

(a) Find the Q%n_@iequaﬁon, assuming it is linear.
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(b) How many people would attend each weekday if tickets were free?
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price for the movie tickets.
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(c) If the supply equation ézurum\’lc Tickets is x — 98 r+ 294 = 0, find the equilibrium quantity and equlhbnum
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8. When the umt price for a particular digital camera is $100, consumers purchase 10,000 units. If the unit price
increases by $50, the number of cameras demanded decreases by 2,500. Manufacturers will not supply any of
these cameras when the unit price is $65, but when the unit price is $200, manufacturers will supply 25,000

cameras. How many cameras are produced at market equilibrium?

y ﬁu;pltj‘: Dengnd
“Renand -,
(;'oooo) 10D) (0, L5)
Ay 59 _ -~ (2500, A00) 971
R AAS -_ 50 VR ==
| 5500 'lg;og;dot;%aw‘m-
ﬁ__,mg) z ”@CX"" IDDI}D) - %{){;DX ‘l"‘lﬂs‘
Y = ~ X 20 P 6
3 = *éﬂ\‘ {F?‘)m

- ..‘go)( +300. =

o

Serportey

Egprihlo guomt = 510 %ideis |
f@wé N pn‘a& ~$2,20

|

2T X165




Math 141 Spring 2006 (€}Heather Ramsey

Page 7

9. Many of the businesses in a small town participated in 2 fundraiser for the American Cancer Society. Each business
( o formed a fundraising team from its own employees. The following table gives the number of employees on each
o team and the corresponding amount of money raised (in thousands of dollars).

Number of Team Members (x)| 15 19 21 22 26 30 30 31
Amount of Money Raised (¥) | 0.95 1.1 19 25 35 47 51 6

(a) Determine the equation of the least-squares regression line for these data. Round to four decimal places.

y= 0.3 Al x 410

(b) Does the regression line give a good representation of the data? Why or why not?
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Sk (c) How many members would you expect a team which raised $3,200 to have?
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(d) How much money would you expect a tearn with 18 members to be able o raise?
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{e) If a business adds one additional member 0 1ts team, in what way can it expect the amount of money thgPy 2,55
team will raise to change? Be specific.
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