Math 141 - Exam 1 Review Answer Key

1. $y=-\frac{5}{3} x$
2. $y=\frac{3}{5} x+\frac{33}{5}$
3. $y=\frac{1}{2} x-4$
4. $x=-7$
5. $y=4 x-160$
6. (a) TRUE
(b) FALSE
(c) FALSE
(d) FALSE
(e) TRUE
(f) FALSE
(g) FALSE
(h) FALSE
(i) FALSE
(j) TRUE
7. I decided to change the equations in the problem so that the numbers worked out nicely. Using the demand equation $31 x+11 y-825=0$ and the supply equation $-14 x+11 y-330=0$, the equilibrium quantity is $x=11$ and the equilibrium price is $y=\$ 44$.
8. Again, to make the numbers work out nicely, I changed the selling price per unit to 1.5 Galleons (instead of 2 Galleons). With this change, the answers are as follows:
(a) production cost per unit $=0.25$ Galleons
(b) $C(x)=0.25 x+15$
(c) $R(x)=1.5 x$
(d) $P(x)=1.25 x-15$
(e) $(12,18)$
9. $k=-\frac{6}{5}$
10. (a) $y=0.9857 x+35.3571$
(b) $\$ 35,145$
(c) $r=0.9120$ Since the correlation coefficient r is very close to 1 , the data have a strong linear relationship.
11. (a) Not in row-reduced form. Column 3 has a leading 1, but it is not a unit column (all other entries in column 3 should be 0).
(b) Is in row-reduced form. Unique solution: $x=5, y=3$
(c) Is in row-reduced form. Infinitely many solutions: Let $y=t$ where t is any real number. Then the parametric solution is $(-3 t+5, t,-7)$.
(d) Not in row-reduced form. The first nonzero entry in row 2 is not a 1 .
(e) Is in row-reduced form. No solution.
(f) Not in row-reduced form. The leading 1 in the second row lies to the left of the leading 1 in the row above it.
(g) Not in row-reduced form. The row of all zeros should be below all rows with nonzero entries.
12. (a) Let x equal the amount of money invested in the high risk stock.

Let y equal the amount of money invested in the medium risk stock.
Let z equal the amount of money invested in the low risk stock.
Then $x=\$ 75,000, y=\$ 200,000, z=\$ 25,000$
(b) Let x equal the number of small sodas sold that day.

Let y equal the number of medium sodas sold that day.
Let z equal the number of large sodas sold that day.
Then the parametric solution is $(t-2,-2 t+25, t)$ where $t=2,3,4, \ldots, 12$. To find a specific (particular) solution, pick any of the possible values of t from the list and substitute that value into the parametric solution.
13. The final matrix will be $\left[\begin{array}{ccc|c}1 & -2 & 0 & 3 \\ 0 & 18 & -8 & -15 \\ 0 & 1 & 1 & 3\end{array}\right]$.
14. I made another change to the problem here. In the second matrix, I changed the $x-7$ in the row 3 , column 1 position to just x, and in the third matrix, I changed the $y-1$ in the row 1 , column 1 position to just y. After making these changes, you find $x=-2, y=-\frac{5}{4}, z=-\frac{8}{3}$, and $u=\frac{2}{3}$.
15. $A=\left[\begin{array}{ll}22 & -21 \\ 26 & -33\end{array}\right]$
16. (a) Not possible. Matrices must be the same size (have the same dimensions) to add.
(b) Result will be 3×3. (Use your calculator to find the exact answer.)
(c) Not possible. D^{-1} is 3×3 and C is 2×3. Since the number of columns of D^{-1} does not equal the number of rows of C, these matrices cannot be multiplied in the given order.
(d) Result will be 2×3. (Use your calculator to find the exact answer.)
(e) $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, the 3×3 identity matrix
(f) Not possible since E is singular (i.e., E^{-1} does not exist).
(g) Not possible. The number of columns of C is not equal to the number of rows of A.
(h) Not possible. C is not a square matrix, so it cannot have an inverse.
17. in text
18. $x=\frac{35}{3}, y=-\frac{77}{9}, z=-\frac{7}{9}$
19. I'm sorry about the crazy font on the graphic-it's the best I could do on short notice. Reverse shading is demonstrated.

20. Let x equal the number of ounces of chicken that should be used in each bag.

Let y equal the number of ounces of grain that should be used in each bag.

$$
\begin{aligned}
& \text { Minimize Cost } C=10 x+y \\
& \text { subject to } 10 x+2 y \geq 200 \\
& 5 x+2 y \geq 150 \\
& \quad x \geq 0, y \geq 0
\end{aligned}
$$

