Math 141 - Exam 3 Review

1. A bag contains 2 red, 1 blue, and 3 green marbles. One marble is chosen randomly from the bag.
(a) Give a non-uniform sample space for this experiment. Then write the event that the marble is green.

$$
S=\{r e d, \text { blue, gen }\}
$$

$$
E=\{\text { guan }\}
$$

coors donot have the same protal. gbringselected.
(b) Give a uniform sample space for this experiment. Then write the event that the marble is green.

Let, er the st red marble, b_{1} betherpicue
2. An experiment consists of casting a 4 -sided die and flipping a coin. Individual mares have the same froerab of being
selected.
(a) Give an appropriate sample space for this experiment.

$$
S=\{1 H, 1 T, 2 H, 2 T, 3 H, 3 T, 4 H+, 4 T\}
$$

(b) Let E be the event that a 3 is rolled on the die, and let F be the event that the coin lands tails. Are these events mutually exclusive? Justify your answer.

$$
\begin{aligned}
E= & \{3 H, 3 T\} \\
F= & \{T T, 2 T, 3 T, 4 T\} \\
& E \cap F=\{3 T\}
\end{aligned}
$$

3. Are mutually exclusive events and independent events the same thing?
since E and F have an element in common, they are NUI No! $E+F$ muckacin oncersists Events are metuallyexcluoive if $P(E \cap F)=0$. (cant hagopat the Eventsare independent if $P(E \cap F)=P(E) P(F)$. che outcome of one does not
4. Jack and Jill are two weather forcasters in Gonzales. The probability that Jack accurately predicts the weather on ailecthe any given day is 0.68 , and the probability that Jill accurately predicts the weather on any given day is 0.72 . If the
 probability that at least one of them is correct on any given day is 0.89 , are Jack and Jill making their weather predictions independently?

$$
\begin{aligned}
& \text { ans } \\
& A=\text { event that tack is convect. } \\
& B=
\end{aligned}
$$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
.89 & =.68+.72-P(A \cap B) \\
P(A \cap B) & =.51 .
\end{aligned}
$$

Test So r Indef

$$
\begin{aligned}
& P(A \cap B)^{2} P(A) P(B) ? \\
& .51=(.68)(.72)
\end{aligned}
$$

$$
\begin{aligned}
& A \cap B)^{2}=P(A) P(B) ? \\
& .51=(.68)(.72)^{2} ?, \quad .51=.4896 \mathrm{Nol}
\end{aligned}
$$

5. Is the following statement correct? "The probability that Kurt spends less than $\$ 15$ on a new DVD is 0.4 . Therefore the probability that Kurt spends more than $\$ 15$ on a new DVD is 0.6 ."
No. If all wet know is the prob probate, the kurt will buy a DVD that costs exactly \$15 is O.
6. A fair 6 -sided die and a fair 8 -sided die are rolled. What is the probability that
(a) the sum of the dice is 4 or 7 ?

$$
\begin{aligned}
& E=\sin =\frac{n(E)}{n(S)}=\frac{3+6}{8 \cdot 6}=\frac{9}{48}
\end{aligned}
$$

(b) the sum of the dice is 7 or at least one 3 is showing?

$$
\begin{aligned}
& F=\text { sum is } 7 \text { ar at leas tone } 3 \text { is showing. } \\
& P(F)=\frac{n(F)}{u(s)}=\frac{17}{48}
\end{aligned}
$$

(c) the sum of the dice is 6 if the 8 -sided die shows an even number?

$$
A-\operatorname{sem} i s 6
$$

B - 8 -sided dieshom even

$$
\begin{aligned}
& B-8 \text {-sided dieshors even } \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2 / 48}{2 H / 48}=\frac{2}{24}
\end{aligned}
$$

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$				
2	$(2,1)$	$(2,2)$				
3						
4						
5						
6						
7						
8						

(d) the sum of the dice is 12 provided that exactly one 6 is showing?

$$
\begin{aligned}
& C=\text { sum a is } 12 \\
& D=\text { axaac:y one } 6 \text { is garaicg } \\
& P(C \mid D)=\frac{P(C \cap D)}{P C D)}=\frac{0 / 48}{12 / 48}=0
\end{aligned}
$$

7. Madison has 5 red, 7 yellow, and 4 blue crayons in her desk drawer. If she selects two at random, what is the probability that she will get two of the same color?

E-event that she gets 2 of the same color.

$$
P(E)=\frac{n(E)}{n(S)}=\frac{C(5,2)+C(7,2)+C(4,2)}{C(16,2)}
$$

dared or 2yellow or blue
8. A local business employs 12 cashiers, 3 shift managers, and 5 stockers. Two employees are selected at random to attend a workshop.
(a) What is the probability that the first employee selected is a cashier?

$$
\frac{12}{20}
$$

(b) Assuming that the first employee selected is a cashier, what is the probability that the second employee selected is a cashier?

$$
\frac{11}{19}
$$

(c) What is the probability that neither the first nor the second employee selected is a cashier?

$$
\begin{aligned}
P\left(C_{1}^{c} \cap C_{2}^{c}\right) & =P\left(C_{1}^{c}\right) P\left(C_{2}^{c} \mid C_{1}^{c}\right) \\
& =\left(\frac{8}{20}\right)\left(\frac{7}{19}\right)
\end{aligned}
$$

$$
C_{1}=1 \text { st is cashier }
$$

$$
c_{2}=2^{n d} \text { iscasnier }
$$

9. A manufacturer of automobiles receives 500 car radios from each of three different suppliers. The shipment from supplier A contains 5 defective radios, the shipment from supplier B contains 7 defective radios, and the shipment from supplier C contains 2 defective radios. As a means of quality control, one radio is selected at random from each of the shipments. What is the probability that Note: you may use a tree diagram, or you fore ${ }^{c}(\mathrm{a})$ all of the radios selected are working properly? may use the fact that the types of

$$
\begin{aligned}
& P\left(1 \text { st was } \cap 2^{\text {nd }} \text { wiles } \quad \text { works }\right) \\
& =P(1 \text { wot wales }) P\left(2^{\text {rd }} \text { wales }\right) P\left(3^{\text {rd }} \text { wales }\right)
\end{aligned}
$$

$$
=\left(\frac{495}{500}\right)\left(\frac{493}{500}\right)\left(\frac{498}{500}\right)=0.9722
$$

(b) at least one of the radios selected is defective?

$$
\begin{aligned}
G= & =\text { lormone } \\
P(G) & =1-p\left(G^{c}\right) \\
& -1-0.9722=0.0278
\end{aligned}
$$

From B

(c) exactly one of the selected radios is defective?
10. A bag contains 5 pennies, 3 nickels, and 7 dimes. A purse contains 4 nickels and 6 dimes. A coin is drawn from the bag and transferred to the purse, but if a nickel is selected from the bag, then all of the nickels in the bag are transferred to the purse. A coin is then drawn from the purse. The type of coin drawn from each of the bag and purse is recorded. What is the probability that
(a) the transferred coin was a dime if a nickel was selected from the purse?

$$
P\left(d_{1} \mid n_{2}\right)=\frac{P\left(d_{1} \cap n_{2}\right)}{P\left(n_{2}\right)}=\frac{\left(\frac{7}{15}\right)\left(\frac{4}{11}\right)}{\left(\frac{5}{15}\right)\left(\frac{4}{11}\right)+\left(\frac{3}{15}\right)\left(\frac{1}{13}\right)+\left(\frac{1}{15}\right)\left(\frac{4}{11} 1\right.}
$$

$P\left(\rho_{1} \cap_{\rho_{2}}\right)=\left(\frac{5}{15}\right)\left(\frac{1}{11}\right)=\frac{5}{165}=\frac{1}{33}$

$$
=\frac{28 / 165}{57 / 143}=\frac{364}{855}(a)
$$

(c) the coin drawn from the purse is a penny if the coin drawn from the bag was a nickel?

$$
P\left(p_{2} \mid n_{1}\right)=0 \quad \text { (mot possible) }
$$

11. A naval acadamy has a student body that is 80% male. 35% of the males and 30% of the females plan to seek a commission in the United States Marine Corps, and all other students plan to seek a commission in the United States Navy.
(a) What is the probability that a student at this academy is male or plans to seek a commission in the Navy?

Let Meretheevent the student is male
Let USN be the event plans to go to Navy.

$$
\begin{aligned}
P(M \cup \text { USN }) & =P(M)+P(\text { UsN })-P(M \cap \text { usN }) \\
& =.8+(.8)(.65)+(.2)(.7))-(.8)(.65) \\
& =(.94
\end{aligned}
$$

(b) What is the probability that a student who plans to seek a commission in the Marine Corps is female?

$$
P\left(M^{C} \mid \text { USMC }\right)=\frac{P\left(M^{c} \wedge \text { USMC }\right)}{P(U S M C)}=\frac{(.2)(.3)}{(.8)(35)+(.2)(.3)}=\frac{.1765}{=3 / 17}
$$

(c) What is the percentage of students at this academy who plan to join the Marine Corps?

$$
P(\text { USMC })=(.8)(.35)+(.2)(.3)=.34
$$

12. Let E and F be two events of an experiment with $P(E)=0.35, P(F)=0.55$, and $P\left(E \cap F^{c}\right)=0.15$.
(a) Find $P(E \cap F)$.

$$
P(F \cap F)=.2
$$

(b) What is the probability that exactly one of these two events occurs?

$$
.15+.35=. .5
$$

(c) Are E and F mutually exclusive?

No b/c $P(E \cap F)=.2$, which means it is foningle for them to occur: at i, some time.
(d) Are E and F independent? Test for Independence

$$
\begin{array}{ll}
P(E \cap F) & \stackrel{?}{=} P(E) P(F) \\
\text { ind } P(E \mid F) .
\end{array} \quad .2 \stackrel{?}{=}(.35)(.55) \quad .1925 \text { No! Not independent }
$$

(e) Find $P(E \mid F)$.

$$
P(E \mid F)=\frac{P(F \wedge F)}{P(F)}=\frac{.2}{.55}=\frac{20}{55}=\frac{4}{11}
$$

(f) Find the probability that af least one of the two events occurs.

$$
P(E \cup F)=.15+.2+.35=07
$$

13. Classify each of the following random variables and give the possible values they each may assume.
(a) $X=$ the number of times a coin is flipped until tails appears.

$$
x=1,2,3,4, \ldots
$$

Infinite Discrete
(b) $X=$ the number of cards drawn (without replacement) from a standard deck of 52 playing cards until a red card is drawn.

$$
x=1,2,3, \ldots, 27
$$

finite discrete
(c) $X=$ the weight of a newborn baby. (in pound 5)
$0<x \leq 30$ (approximate interval)
Continuous
(d) $X=$ the number of hours my cat Mouse sleeps in one day.

$$
0 \leq x \leq 24
$$

continuous
(e) $X=$ the number of times my phone rings in one hour.

$$
\begin{aligned}
& x=\text { finite discrete } \\
& x=0,1,2, \ldots, n \text { when } n=\text { the maximum } \nRightarrow \\
& { }_{5} \quad \text { of rigs in she how }
\end{aligned}
$$

14. 16 people are selected at random. What is the probability that at least 2 of the people in this group
(a) were born in the same week? (There are 52 weeks in a year.) E-at least? were bon in same week : $E C=$ none bon in same were

$$
\begin{aligned}
P(E) & =1-P\left(E^{c}\right) \\
& =1-\frac{n\left(E^{c}\right)}{n(5)} \\
& =1-\frac{P(52,16)}{52^{16}}
\end{aligned}
$$

$$
n\left(E^{c}\right): 52515019
$$

$$
\left.n(S)=52525252 \cdots \frac{52}{n}\right\} 16 \text { blanks }
$$

$G=$ at least 2 in same month
$G^{2}=$ none in same mon th

$$
P(G)=1-P\left(G^{c}\right)=1-\frac{0}{n(s)}=1
$$

15. The odds against it snowing in College Station next winter are 17 to 2 . What is the probability that it will snow in College Station next winter?

$$
\begin{aligned}
& \text { against }=17 \text { to } \\
& P(E)=\frac{2}{2+17}=\frac{2}{19}
\end{aligned}
$$

16. Two cards are drawn at random from a standard deck of 52 playing cards. What are the odds that the second card drawn is a king given that the first card drawn was a queen?
it find propab.

$$
\begin{array}{r}
P\left(\partial^{n d} \text { isking } 11 \text { st is queen }\right)=\frac{4}{51} \in \text { probab. } \\
\quad \frac{4 / 51}{1-4 / 51}=\frac{4}{47}[4 t 047
\end{array}
$$

17. A probability distribution has a mean of 100 and a standard deviation of 4 . Use Chebychev's Theorem to estimate the probability that an outcome of the experiment lies between 90 and 110. (Notes: mists topic is notcowered in all lassen.)

$$
\mu=100, \sigma=4
$$

$$
P(90 \leq x \leq 110) \geqslant 1-\frac{1}{k^{2}}=1-\frac{1}{(2.5)^{2}}=0.84
$$

$$
\begin{aligned}
& \begin{array}{l}
100 \text { toll o } \rightarrow 10 \\
90 \text { to } 100 \rightarrow 10 \quad \\
\mu \pm 10
\end{array} \\
& \quad-\operatorname{since} \cdot \sigma=4, \quad 10=4 k \\
& \frac{10}{4}=k \quad k=\frac{5}{2}=2.5
\end{aligned}
$$

18. Fred wants to purchase a 10 -year term life insurance policy that will pay his beneficiary $\$ 100,000$ in the event that Fred does not survive the next 10 years. Using life insurance tables, he determines that the probability that he will live another 10 years is 0.97 . What is the minimum amount that he can expect to pay for his premium?
Let $X=$ the isscuranee co's gain π This amount makes the insurance want $E(X)=0$. company's expected gain $=0$
Kneed probab. distrib.
(lives)

$$
\frac{X}{A} \quad \frac{P(X=x)}{.97}
$$

(dolenot)

$$
A-10,000
$$

.03
$=A-3$
$A=\$ 3000$
19. Suppose you roll two fair 6 -sided dice and take the sum of the numbers landing up. You will win twice what you paid if the sum is 7 or 11 . You lose what you paid if the sum is 2,3 , or 12 . For any other sum, you win $\$ 5$. The game costs $\$ 10$ to play. Let X denote the net winnings of someone who plays once.
(a) What is the expected net winnings?
$x=$ net Winnings

$$
\begin{aligned}
& E(X)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n} n \\
& E(X)=10\left(\frac{(36)}{36}\right)+(-10)\left(\frac{4}{30}\right)+(-5)\left(\frac{24}{36}\right)=-2.22
\end{aligned}
$$

Win Out cons Value of $X \quad P(X=x)$
$\$ 20$ 1orll $10 \quad P($ sum $=70 r 11)=\frac{8}{36}$
\$0 $2,3,12-10 \quad P(\operatorname{sen}=2,3,0 \times 12)=\frac{4}{36}$
tb allothers -5
$P($ any other sum $)=\frac{24}{36}$

20. A cashier at a convenience store kept a record of the number of items purchased by each customer on one day. The data she collected are summarized in the following table:

Number of items purchased	0	1	2	3	4	5	6	7
Number of customers	5	25	22	13	7	2	1	1

(a) Write the probability distribution of the number of items purchased.

$X=$ \#sitems purchased
$P(X=X)$
$\left.\left\lvert\, \begin{array}{cccccccc}\frac{5}{76} & \frac{25}{76} & \frac{22}{76} & \frac{13}{76} & \frac{1}{76} & \frac{2}{76} & \frac{1}{76} & \frac{1}{76} \\ .07 & .33 & .29 & .17 & .09 & .03 & .01 & .01\end{array}\right.\right)$

(b) Draw a histogram associated with the probability distribution found in part (a).

(c) Find $P(2 \leq X \leq 4)$ '.

$$
\begin{aligned}
& P(X=2)+P(x=3)+P(X=4)= \\
& \frac{22}{76}+\frac{13}{76}+\frac{7}{76}=\frac{42}{76} \\
& P(X \leq 5) .
\end{aligned}
$$

(d) Find $P(X \leq 5)$.

$$
\begin{aligned}
1-P(X>5) & =1-(P(x=6)+P(X=7) \\
& =1-\left(\frac{1}{76}+\frac{1}{76}=\frac{74}{76}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) How many items could a customer on that day be expected to buy: } \\
& \text { or } E(x)=0 \cdot \frac{5}{76}+1 \cdot \frac{25}{76}+\cdots+7\left(\frac{1}{76}\right) \text { K Expected value } \rightarrow \text { can use } \bar{X} \text { in } \\
& \\
& \text { (var Stat } 5 L_{1},
\end{aligned}
$$ invar Starts L_{1}, L_{2}

$$
E(x)=2.0921
$$

variance for the frequency chart. Be sure to all answers.

$$
\begin{array}{lrl}
\text { mean }=\bar{x}=2.092 & \text { standanddev }=S_{x}=1.3873 \\
\text { median }=2 & \text { variance }=s_{x}{ }^{2}=1.924 \\
\text { mode }=1 & &
\end{array}
$$

(g) Draw a box and whisker graph with labels for these data. Are there any outliers? (Norse: This topic is not cored final classes)

Each of the following problems comes from Section 8.4. Not all instructors are including this section on Exam 3.
21. A student takes a 10 question multiple choice exam, each question of which has 5 answer choices (1 correct, 4 incorrect). Being unprepared for the exam, the student randomly guesses at each question.
(a)
binonpdf $(10,1 / 5,6)$

$$
=.0055
$$

$\left[\begin{array}{l}\text { (a) What is the probability that the student gets exactly } 6 \text { questions correct? } \\ P(X=6)=\frac{n(X=6)}{n(5)}=\frac{C(10,6)\left(1^{6}\right)\left(4^{4}\right)}{5^{10}}=0055\end{array}\right.$
(b) What is the probability that the student gets at least 60% of the questions correct?

$$
\text { b) } P(x \geqslant 6)=.0064
$$

(c) What is the probability that the student gets the first 4 correct and the last 6 incorrect? -

$$
C=\operatorname{correct}_{0} \mathrm{cos}
$$

orrect $P\left(C_{1} \cap C_{2} \cap C_{3} \cap c_{4} \cap C_{5}^{c} \cap C_{6}^{c}, i_{4} \cap c_{10}^{c}\right)$
Index. $\left(\frac{1}{5}\right)\left(\frac{1}{5}\right)\left(\frac{1}{5}\right)\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)\left(\frac{4}{5}\right) \cdots\left(\frac{4}{5}\right)=\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{6}=$
(d) How many questions should the student expect to get correct?

$$
E(x)=n p=10\left(\frac{1}{5}\right)=2
$$

(e) Find the variance and standard deviation for the number of questions answered correctly.

$$
\begin{aligned}
& \operatorname{va}(x)=\operatorname{rpq}=(10)\left(\frac{1}{5}\right)\left(\frac{2}{5}\right)=1.6 \\
& \sigma_{x}=\sqrt{n p q}=\sqrt{1.6}=1.2649
\end{aligned}
$$

22. A company manufactures one product. For quality control, a random sample of 6 items is selected from a each lot of products made by this company before the lot is shipped. If any defective items are found in the sample, the entire lot is rejected. If 2.3% of the items produced by this company are defective, what is the probability that a lot will be shipped?
BINOM program $P($ shipped $)=P($ no defectives $)$

$$
n=6, p=0.023 \text {, option } 1, r=0
$$

or binompdf $(6,0.023,0)$
23. A psychological study has determined that 4.8% of all kindergarteners have Attention Deficit Disorder (ADD). In an elementary school with 115 kindergarteners, find the probability that more than 30% have ADD.

$$
\begin{aligned}
& \text { BINDM program: } n=115, P=.048 \text {, options, lowe } R=35 \text {, upper }=115 \\
& \text { or } 1 \text {-binomed } f(115, .048,34)=1-1=0 \quad P(X \geqslant 35)=6.066 \times 10^{-19}
\end{aligned}
$$

24. The police department of a certain town estimates that 23% of all drivers in their town do not wear their seatbelts. If ≈ 0 60 cars are stopped at random, what is the probability that more than 90% of the drivers are wearing their seatbelts?

$$
\begin{aligned}
& n=60 \\
& \text { "success" }=\text { wearing seatbelt } \\
& p=1-.23=.77 \\
& \text { Index. Trials? yes } \\
& \text { Binomprogram } \\
& n=60 \\
& p=.77 \quad \text { or } \operatorname{binomadf}(60, .77,60) \text { - } \\
& \text { option } 2 \text { or binomedf }(60, .77,54
\end{aligned}
$$

Want prob. of more than 90\%0 of 60

