Math 142 - Week in Review #9

- 1. If $f(x) = 4x^3 2x + \sqrt{7}$, give three different functions that are antiderivatives of f(x).
- 2. Compute each of the following indefinite integrals and give the appropriate units for each.
 - (a) $\int \left(3e^t + \frac{15}{t} 5t\right) dt$ births per year, where *t* is in years (b) $\int \left(57 - 3x^{-5} + 2x^{-1}\right) dx$ miles per hour, where *x* is in hours (c) $\int \left(5\sqrt{x} - \sqrt{11} + \frac{4}{\sqrt[5]{x}}\right) dx$ students per section per year, where *x* is in years
- 3. Compute each of the following indefinite integrals.
 - (a) $\int 7x^{6}\sqrt{5+x^{7}}dx$ (b) $\int (x^{9}+4x)e^{x^{10}+20x^{2}}dx$ (c) $\int \frac{8t-7}{4t^{2}-7t}dt$ (d) $\int \frac{6m}{\sqrt[3]{m-3}}dm$ (e) $\int t^{2}\sqrt{t+4}dt$ (f) $\int \frac{4}{p\ln p}dp$
- 4. Find f(x) if $f'(x) = 9x^{-1} + 5x^{-2} 7$ and f(3) = 10.
- 5. The research department of Acme, Inc. has determined the marginal cost function for one particular item to be $C'(x) = 0.12e^{0.04x}$ dollars per item, where x is the number of items produced. If Acme's fixed costs amount to \$3,000, find a model for the total production cost of this item.
- 6. The rate at which a particular plant grows is given by $r(t) = \frac{1}{2}t^2 + 4$ mm per day, where *t* is the number of days since the plant was potted in fresh soil, $0 \le t \le 5$.
 - (a) Compute L_3 to estimate $\int_0^3 r(t) dt$, i.e., to estimate the area under r(t) on the interval [0,3].
 - (b) Now compute a midpoint sum with 6 rectangles of equal width to estimate $\int_{0}^{3} r(t) dt$.
 - (c) Give an interpretation to your answers in (a) and (b).

7. Given that
$$\int_2^7 f(x)dx = -2$$
, $\int_2^7 g(x)dx = 8$, and $\int_7^9 g(x)dx = 5$, find each of the following.

(a)
$$\int_{2}^{7} (8g(x) - f(x)) dx$$

(b) $\int_{2}^{9} 10g(x) dx$
(c) $\int_{2}^{2} 7f(x) dx$

(d)
$$\int_{7}^{2} (f(x) + g(x)) dx$$

- 8. Find the average value of $k(x) = 4x^2 6x$ on [2, 5].
- 9. Compute each of the following by hand.

(a)
$$\int_{-2}^{3} (7x - 8e^x) dx$$

(b) $\int_{1}^{4} \frac{x}{(x^2 - 9)^5} dx$
(c) $\int_{0}^{a} 5t(8t^4 - 7t^{-3}) dt$
(d) $\int_{-1}^{2} (x - 5)(x^2 - 10x)^3 dx$

10. The rate at which the concentration of a particular drug in the blood stream increases when taken daily can be modeled by

$$r(t) = \frac{2.2}{t} \mu \text{g/mL per day}$$

where *t* is the number of days since the daily regimen was started, $1 \le t \le 17$.

- (a) Find the average rate of change of the concentration of the drug in the blood stream from taking the second dose through taking the eighth dose.
- (b) If five days after the regimen was started, the concentration of this drug in the blood stream was 4.5 μ g/mL, find a model for the concentration of the drug in the bloodstream.
- (c) Find the average concentration of the drug in the bloodstream from taking the third dose through taking the tenth dose.
- 11. The temperature of a cup of coffee can be modeled by $T(x) = 70 + 130e^{-0.05x^\circ}F$ where x is the number of minutes since the cup of coffee was poured.
 - (a) What is the average temperature of the coffee during the first 1.25 hours since it was poured?
 - (b) What is the average rate of change of the coffee's temperature from 0.75 hour to 1.5 hours after it was poured?
- 12. Acme Widget Company's marginal profit is given by $P'(x) = 35e^{-0.01x}$ dollars per widget, where x is the number of widgets produced per day.
 - (a) If the current production level is 250 widgets per day and the manager wishes to increase production to 275 widgets per day, how will this production increase affect profit?
 - (b) Find a model for profit if the profit earned by selling 120 widgets is \$300.