THE K FUNCTIONAL FOR (H_1, BMO)

R. DeVore
Mathematics Research Center
University of Wisconsin-Madison
Madison, Wisconsin 53706, USA

1. Introduction. There are several theorems [1], [4], [5] which show that in some sense H_1 and BMO can serve as replacements for L_1 and L_∞ respectively for interpolation theory. For example, it is known that the L_p spaces $1 < p < \infty$ are interpolation spaces between any of the pairs (X_1, X_∞) with X_1 either L_1 or H_1 and X_∞ either L_∞ or BMO. We are interested in the finer question of characterizing the K functionals for these pairs (X_1, X_∞). Actually the K functional is known or easily derived from known results in all but the one case (H_1, BMO). The characterization of the K functional for this latter pair is the main result of this paper.

Recall that for any pair of Banach spaces (X, Y), the Peetre K functional is defined for $f \in X + Y$ by

$$K(f, t, X, Y) := \inf_{h+g} (||h||_X + t||g||_Y), \quad t > 0.$$

Perhaps, it is useful to explain the interest in characterizing these K functionals. If T is a bounded operator on X_1 and X then T satisfies

$$K(Tf, t) \leq cK(f, t) \quad \text{for all } f, \quad X_1 + X_\infty$$

(1.1)

with $K(f, t) := K(f, t, X_1, X_\infty)$ the corresponding K-functional. The inequality (1.1) carries more information than any particular result on mapping of spaces. For example, $K(f, t, L_1, L_\infty) = tf^{**}(t)$ with f^* the decreasing rearrangement of f and $f^{**}(t) := \frac{1}{t} \int_0^t f^*(s)ds$; hence if T is bounded on L_1 and L_∞, then

$$K(Tf, t) \leq cK(f, t).$$

(1.2)

1 This research is supported by NSF Grant 8101661.

2 All spaces are over \mathbb{R}^n unless specifically stated otherwise.
It follows from (1.2) that \(T \) is bounded (for example) on \(L \log L \); a result which is not included in the usual interpolation theorems for \((L^1, L^\infty)\) which give only that \(T \) is bounded on \(L^p, 1 < p < \infty \).

Another reason for studying \(K \) functionals is that they usually involve analytic quantities which are fundamental to the study of the particular pairs of spaces; \(f^{**} \) for \((L^1, L^\infty)\). Another example is \((L^1, \text{BMO})\) where C. Bennett and R. Sharpley [1] have shown

\[
(1.3) \quad K(f, t, L^1, \text{BMO}) \approx tf^{**}(t) \quad \text{for all} \quad f \in L^1 + \text{BMO} \quad \text{and} \quad t > 0
\]

with

\[
f^{*}(x) := \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f - f_Q|; \quad f_Q := \frac{1}{Q} \int_Q f
\]

the Fefferman-Stein sharp function. We use the notation "\(\approx \)" to indicate that the quotient of the two expressions are bounded away from 0 and \(\infty \) (independent of \(f \) and \(t \) in (1.3)). The fact that \(L^p \) spaces \(1 < p < \infty \) are interpolation spaces between \(L^1 \) and \(\text{BMO} \) follows from (1.3) and the fact that for \(1 < p < \infty \)

\[
(1.4) \quad \|f^*\|_{L^p} \approx \|f\|_{L^p} \quad \text{for all} \quad f \in L^p.
\]

It is possible to characterize the \(K \) functional for \((H^1, L^\infty)\) from the work of C. Fefferman-N. Rivière and Y. Sagher [4]. They have shown that each (smooth) function \(f \) can be written as \(f = b + g \) with

\[
\|b\|_{H^1} + t \|g\|_{L^\infty} \leq c \int_0^t (Mf)^*(s) \, ds - ct(Mf)^**(t)
\]

with \(M \) the grand maximal function (see (2.11)). From this it follows that

\[
K(f, t, H^1, L^\infty) \leq ct(Mf)^**(t).
\]

On the other hand, \(F + (MF)^** \) is subadditive and \(M \) maps \(H^1 \) into \(L^1 \) and \(L^\infty \) into \(L^\infty \); hence for \(f = b + g \)

\[
t[Mf]^**(t) \leq t(Mb)^**(t) + t(Mg)^**(t) \leq c[Mb]_{L^1} + t[Mg]_{L^\infty}
\]

\[
\leq c(\|b\|_{H^1} + t \|g\|_{L^\infty}).
\]
Taking an inf over all such decompositions gives
\[t(Mf)_{**}(t) \leq cK(f,t,H_1,L_\infty) \]
or
\[K(f,t,H_1,L_\infty) \sim t(Mf)_{**}(t), \quad f \in H_1 + L_\infty. \tag{1.5} \]

We shall characterize the \(K \) functional for the remaining pair \((H_1, \text{BMO})\). This characterization involves a generalization of the sharp function \(\hat{f}^{\#} \) to a new sharp function \(\hat{f}^{\#}_{H_1} \) which essentially replaces the role of \(L_1 \) by that of \(H_1 \) (see §2 for a precise definition). We then show that
\[K(f,t,H_1,\text{BMO}) \sim t\hat{f}^{\#}_{H_1}(t) \tag{1.6} \]

As a consequence, any operator \(T \) which is bounded on \(H_1 \) and \(\text{BMO} \) satisfies
\[(Tf)_{H_1}^{\#*} \leq c \hat{f}^{\#*}_{H_1}. \tag{1.7} \]

In the process of proving (1.6), we establish several results which compare \(\hat{f}^{\#}_{H_1} \) with other sharp functions. These in turn show that \(\| \hat{f}^{\#}_{H_1} \|_{L_p} \sim \| f \|_{L_p} \) (Corollary 3.4). Therefore the fact that \(L_p, 1 < p < \infty \) is an interpolation space between \(H_1 \) and \(\text{BMO} \) follows from (1.7) by applying \(L_p \) norms.

2. Sharp Functions. \(\text{BMO} \) is the space of all \(f \) satisfying
\[\| f \|_{\text{BMO}} := \| \hat{f}^{\#} \|_{L_\infty} < \infty. \tag{2.1} \]

It is a very useful fact that \(\hat{f}^{\#} \) can be replaced in (2.1) by (see [1, Cor. 4.7])
\[\hat{f}^{\#}(x) := \sup_Q \left(\frac{1}{|Q|} \int_Q |f-f_Q|^p \right)^{1/p}. \tag{2.2} \]

A word of explanation about notation; we are being consistent with [2] where maximal functions \(f^{\#}_{\alpha,p} \), \(\alpha, p > 0 \) are introduced.

There is another important variant in the definition of \(\hat{f}^{\#} \). If we let \(\mathcal{P}_N \)
denote the space of polynomials of total degree N, then for any fixed N we have
\[(2.3) \quad \|f\|_{0,p}^p \preceq T; \quad F(x) := \sup_{Q \ni x} \inf_{\phi \in \mathcal{P}_N} \frac{1}{|Q|} \int_Q |f - \phi|^p. \]

We want now to introduce a sharp function which replaces the role of L_p in the definition of $f_{0,p}^p$ by the space H_1^\perp. We must take some care since $(f - f_Q^\perp) \chi_Q$ is generally not in H_1^\perp. Let $A := 20 \sqrt{n}$ (the precise value of A is not important; any A sufficiently large would do). For each cube Q with diameter d let ϕ_Q denote the set of functions ϕ satisfying
\[(2.4) \quad \begin{array}{l}
1) \quad \phi \text{ supported on } A Q; \quad 0 \leq \phi \leq 1. \\
2) \quad \phi \geq A^{-1} \quad \text{ on } A^{-1} Q. \\
3) \quad \|D^n \phi\|_{L^\infty} \leq A d^{-|n|}, \quad \forall \quad n \geq 0.
\end{array} \]

We are using the notation λQ_A to denote the cube with the same center as Q and diameter λd with d the diameter of Q.

Given $\phi \in \phi_Q$, consider the inner product
\[(2.5) \quad (f, g, \phi) := \frac{1}{|Q|} \int_Q f g \phi, \]
and denote by P_{ϕ} the orthogonal projection operator from $L_1(AQ)$ onto \mathcal{P}_N with $N := n + 1$, i.e. $P_{\phi} f$ is the unique polynomial in \mathcal{P}_N which satisfies
\[(2.6) \quad (f - P_{\phi} f, \tau) = 0 \quad \text{for all } \tau \in \mathcal{P}_N. \]

If $f \in H_1^\perp$, define
\[(2.7) \quad f_{H_1^\perp} (x) := \sup_{\phi \in \phi_Q} \sup_{Q \ni x} \| (f - P_{\phi} f) \|_{H_1^\perp}. \]

As we shall see in this and the next section, $f_{H_1^\perp}$ is similar to $f_{0,p}^p$. To begin with, we recall two equivalent norms for H_1^\perp from the C. Fefferman-E. Stein [3] theory. If $k \in L_1$, let
\[(2.8) \quad \|k\|_{W_N} := \sum_{|n| \leq N} \int_{|x| \leq n} |(1 + |x|)^N |D^n k(x)| \, dx \]
with $N := n + 1$. We fix a kernel K with the properties:
(2.9)
1) \(K \geq 0 \)

ii) \(\int K = 1 \)

iii) \(K \) supported on \(|x| \leq 1 \)

iv) \(\| D^\nu K \|_{\infty} \leq c, \) for all \(|\nu| \leq N. \)

Then \(\| K \|_{N} \leq c. \) Let

\[f^+(x) := \sup_{\epsilon > 0} |f * K_\epsilon(x)| \]

Then,

(2.10) \[\| f^+ \|_{L^1} \approx \| f \|_{N} \]

There is another important equivalent norm for \(N \) given by the grand maximal function. Let \(\alpha > 0 \) be a fixed constant and

(2.11) \[Mf(x) := \sup_{\|k\|_{N} \leq 1} \sup_{|x_1-x|<\alpha \epsilon} |f * k_\epsilon(x)|. \]

Then

(2.12) \[\| Mf \|_{L_1} \approx \| f \|_{N}. \]

Note in the definition (2.11) the kernels \(k \) are not required to have integral one.

We would like now to give estimates for \(P_\phi f \) in terms of \(Mf. \) These are similar to those given in [4]. Let \(\{ \eta_i \}_{i=1}^m, n = \text{dim}(P_N) \) be an orthonormal basis for \(P_N \) with respect to the inner product \((,)_{\phi}. \) Then

\[P_\phi f = \sum_{i=1}^m (f, \eta_i)_{\phi} \eta_i. \]

Using (2.4)ii, we have

\[\| \pi_1 \|_{L_2(A^{-1}Q)} \leq (A \int \pi_j^2 \phi)^{1/2} = (A|\phi|)^{1/2}. \]

It follows that for any \(\lambda > 0 \) (see [2, §3])
(2.13) \[\| \pi_\lambda \|_{L_\infty(\lambda Q)} \leq c \| \pi_\lambda \|_{L_\infty(A^{-1}Q)} \leq c |Q|^{-\lambda} \| \pi_\lambda \|_{L_2(A^{-1}Q)} \leq c \]

with \(c \) depending only on \(\lambda, A \) and \(n \).

Lemma 2.1. For any \(\lambda > 0 \), there is a constant \(c > 0 \) depending at most on \(\lambda, A \) and \(n \) such that

\[|(\xi, \pi_\lambda \phi)_{\lambda Q} | \leq c M \xi(x), \quad \text{for all } x \in \lambda Q \]

(2.15) \[\| P_\phi \pi \|_{L_\infty(\lambda Q)} \leq c M \xi(x), \quad \text{for all } x \in \lambda Q. \]

Proof. Clearly (2.15) follows from (2.14) and (2.13). To prove (2.14), we notice that (2.13) and Markov's inequality give that \(\| D^\nu \pi_\lambda \|_{L_\infty(\lambda Q)} \leq c d^{-|\nu|} \| \pi_\lambda \|_{L_\infty(\lambda Q)} \), which is \(|\nu| \leq N \). Hence, using (2.4) we see that the kernel \(k(u) := \pi_\lambda (x-du) \phi(x-du) \) satisfies

\[\| D^\nu k \|_{L_\infty} \leq c \| \pi_\lambda \|_{L_\infty} \]

If \(x \in \lambda Q \), then \(k \) is supported in \(|u| \leq A+\lambda \) and so \(\| k \|_{L_\infty} \leq c \). Therefore,

\[|(\xi, \pi_\lambda \phi)_{\lambda Q} | = |(\xi, \pi \phi)_{\lambda Q} | = |\xi \ast k_\xi(x) | \leq c M \xi(x). \]

Our next result estimates \(\psi^+ \) when \(\psi := (\xi - P_\phi \xi) \phi \).

Lemma 2.2. If \(\lambda \geq 2A \), there is a constant \(c > 0 \) depending only on \(\lambda \) and \(n \) such that for each cube \(Q \) with diameter \(d \) and center \(z \) and each \(\phi \in \Phi_Q \), we have

(2.16) \[1) \psi^+(x) \leq c M \xi(x), \quad x \in \lambda Q \]

\[2) \psi^+(x) \leq c |Q|^{-\lambda} d^n A^{-1} |x-z|^{-2n-1} \inf_{\lambda Q} \| f \|_{\lambda Q}, \quad x \notin \lambda Q. \]

Proof. For 1), we consider two cases.

- **Case 1.** \(\rho \leq d \). In this case, \(k(u) := X(u) \phi(x-\rho u) \) satisfies

\[\| k \|_{L_\infty} \leq c \] because of (2.4), and so

\[|(f \phi) \ast K_\rho(x)| = |\xi \ast k_\rho(x)| \leq c M \xi(x). \]
Also from \((2.15)\) and \((2.4)\),

\[
| (\phi P_{\phi} \ast K_{e}(x) | \leq \| \phi (P_{\phi} \ast \xi) \| _{L_{\infty}} \leq \| P_{\phi} \xi \| _{L_{\infty}} (AQ) \leq c M_{f}(x) .
\]

Hence,

\[(2.17) \quad | \psi \ast K_{e}(x) \| \leq c M_{f}(x) \]

in this case.

Case 2. \(e > d\). In this case, the kernel \(k(u) := K_{e}(\frac{du}{c}) \phi (x - du)\) satisfies \(\| k \| _{U_{N}^{\infty}} \leq c\) and so

\[
| (f \phi) \ast K_{e}(x) | = \left(\frac{d_{1} d_{2}}{c} \right) | f \ast K_{e}(x) | \leq c M_{f}(x)
\]

Also, from \((2.15)\) and \((2.4)\),

\[
| (\phi P_{\phi} \ast K_{e}(x) | \leq \| \phi P_{\phi} \xi \| _{L_{\infty}} \leq \| P_{\phi} \xi \| _{L_{\infty}} (AQ) \leq c M_{f}(x) .
\]

Hence \((2.17)\) holds in this case as well. Taking a sup over all \(e > 0\) in \((2.17)\) gives \(\| \|\).

To prove \(ii)\), fix \(x \notin \lambda Q\) and define \(\delta := \text{dist}(x, AQ)\). Then \(\delta \geq c|x - z|\). If \(e < \delta\), then \(\psi \ast K_{e}(x) = 0\); hence we may assume \(e \geq \delta\).

Now, there is a Taylor polynomial \(T\) of degree at most \(N\) such that

\[(2.18) \quad | K_{e}(u - x) - T(u) | \leq c e^{-2n-1} d^{n+1} u \in \lambda Q \]

because derivatives of order \(N\) of \(K_{e}(\ast - x)\) are less than \(c e^{-2n-1}\). Thus, using \((2.18)\) and \((2.6)\) gives

\[(2.19) \quad | \psi \ast K_{e}(x) | \leq \int (f(u) - P_{\phi} f(u)) \phi(u) K_{e}(u - x) du \]

\[
= \int (f(u) - P_{\phi} f(u)) \phi(u) [K_{e}(u - x) - T(u)] du \]

\[
\leq c \left(\frac{e^{n+1}}{e^{2n+1}} \right) \int_{AQ} \left| f - P_{\phi} f \right| du
\]

For any \(\pi \in \mathcal{P}_{N}\), \(P_{\phi}(\pi) = \pi\) and so
\[
\int_{\Lambda} |f - P_\phi f| \leq \int_{\Lambda} |f - \pi| + \int_{\Lambda} |P_\phi (f - \pi)| \\
\leq c \int_{\lambda \Lambda} |f - \pi| \leq c \int_{\lambda \Lambda} |f - \pi|
\]
because \(P_\phi \) is a bounded operator on \(L_1(\Lambda) \) (see (2.13)). Taking an inf over all \(\lambda \) and using (2.3) gives
\[
\int_{\Lambda} |f - P_\phi f| \leq c |\lambda \Lambda| \inf_{\lambda \Lambda} f^*.
\]
Using this in (2.19) completes the proof of (ii). \(\square \)

3. Lower estimates for \(K \) functionals. The main result of this paper is the following characterization of \(K(f, t, H_1, \text{BMO}) \).

Theorem 3.1. There exist constants \(c_1, c_2 > 0 \) depending only on \(n \) such that for all \(f \in H_1 + \text{BMO} \)
\[
(3.1) \quad c_1 t f_{H_1}^\#(t) \leq K(f, t, H_1, \text{BMO}) \leq c_2 t f_{H_1}^\#(t)
\]
In this section, we shall prove the lower estimate in (3.1); the upper estimate is proved in the next section.

The lower estimate in (3.1) rests on the behavior of \(f_{H_1}^\#(t) \) for \(t \) close to 0 and \(t \) close to \(\infty \).

Lemma 3.2. For any \(1 < p < \infty \); there are constants \(c_1, c_2 > 0 \) such that
\[
(3.2) \quad c_1 f^\# \leq f_{H_1}^\# \leq c_2 f_{0,p}^\#
\]
in the sense that when one of these functions is finite the compared expression is also finite and smaller.

Proof. Suppose \(x \in \mathbb{R}^n \) and \(Q \) is any cube containing \(x \). There is a function \(\phi \in \mathcal{A}_Q \) with \(\phi \equiv 1 \) on \(Q \). Therefore,
\[
(3.3) \quad \frac{1}{|Q|} \int_Q |f - P_\phi f| \leq \frac{1}{|Q|} \int_Q |(f - P_\phi f)\phi| \leq \frac{c}{|Q|} \|(f - P_\phi f)\phi\|_{H_1} \leq c f_{H_1}^\#(x)
\]
Taking a sup over all cubes \(Q \) containing \(x \) in (3.3) and using (2.3) with \(p = 1 \) gives the lower estimate.

852
For the upper inequality, we will use the fact that \(\| x^+ \|_{L_p^*} \leq c \| g \|_{L_p^*} \) for all \(g \in L_p \) (see [3]). Let \(Q \) again be a cube which contains \(x \) and let \(\phi \in \Phi_Q \). Then \(\psi := (f - P_\phi f) \phi \) is supported on \(\bar{Q} := 2AQ \). Using the estimates in (2.16(ii)) we have

\[
(3.4) \quad \| (f - P_\phi f) \phi \|_{H^1} \leq c \int_{\bar{Q}} \psi^+ \leq c \int_{Q} \psi^+ + c \frac{1}{|Q|} \psi^+
\]

\[
\leq c \left[|Q| \left(\frac{1}{|Q|} \int_{Q} |f - P_\phi f|^p \right)^{\frac{1}{p}} + |Q| \int_{Q} \xi^p \right]
\]

\[
\leq c \left[|Q| \left(\frac{1}{|Q|} \int_{Q} |f - P_\phi f|^p \right)^{\frac{1}{p}} + \xi^p \right]
\]

where the second to last inequality uses the fact that \(\int_{\bar{Q}} |x - z|^{-2n-2} c \). Since \(P_\phi \) is a bounded (with norms depending only on \(n \)) projection from \(L_p(Q) \) into \(P_N \), for any \(\pi \in P_N \), we can write \(f - P_\phi f = f - \pi - P_\phi (f - \pi) \) and find

\[
\frac{1}{|\phi|} \left(\int_{\bar{Q}} |f - P_\phi f|^p \right)^{\frac{1}{p}} \leq c \left(\int_{Q} |f - \pi|^p \right)^{\frac{1}{p}}
\]

Taking an inf over \(\pi \in P_N \) and using this back in (3.4) gives

\[
\frac{1}{|\phi|} \| (f - P_\phi f) \phi \|_{H^1} \leq c \left(\int_{Q} |f_0|^2 \right)^{\frac{1}{2}} \langle \xi \rangle + \xi \rangle
\]

Since \(f^\# \leq f_0^\# \) because of Hölder's inequality, we have the upper inequality in (3.2).

As a corollary to this lemma, we have

Corollary 3.3. There are constants \(c_1, c_2 > 0 \) such that for each \(f \in BMO \)

\[
(3.5) \quad c_1 \| f \|_{BMO} \leq \| f^\# \|_{L^\infty} \leq c_2 \| f \|_{BMO}
\]

Proof. This follows from (3.2) and the fact that \(\| f \|_{BMO} \approx \| f_0^\# \|_{L^\infty}, 1 \leq p < \infty \).

Corollary 3.4. If \(1 < q < \infty \), there are constants \(c_1, c_2 > 0 \) such that for each \(f \in L_q \)

\[
\| f^\# \|_{H^1 L^q} \approx \| f \|_{L^q}
\]

853
Proof. This follows from (3.2) by taking $1 < p < q$ in (3.2) applying L_q norms and using the fact (see [1]) that $\| f^\# \|_{L_q} \approx \| f \|_{L_q}$. □

We also need an estimate for $f^\#_{H_1}$ near H_1.

Lemma 3.5. There is a constant c such that for all $f \in H_1 + \text{BMO}$

\[
(3.6) \quad f^\#_{H_1}(x) \leq c M(E)(x)
\]

with M the Hardy-Littlewood maximal operator.

Proof. Let Q be any cube in \mathbb{R}^n, $x \in Q$ and $\phi \in \Phi_Q$. With $\psi := (f - P_\phi f)\phi$ and $\bar{Q} := 2AQ$, we have from (2.16)

\[
\| \psi \|_{H_1} \leq c \| \psi^+ \|_{L_1} \leq c \left(\int_a^{\bar{Q}} + \int_{\bar{Q}} \psi^+ \right) \leq c \left(\int \frac{\partial \tilde{f}}{\partial Q} + |Q| \tilde{f}^\#(x) \right)
\]

\[
\leq c |Q| \left(M(E)(x) + \tilde{f}^\#(x) \right) \leq c |Q| M(E)(x)
\]

where we used the fact that $\tilde{f}^\# \leq 2M(\tilde{f}) \leq 2M(E)$. Dividing by $|Q|$ and taking a sup over all $\phi \in \Phi_Q$ and $Q \ni x$ gives (3.6). □

Corollary 3.5. There is a constant c such that for all $f \in H_1$ and $t > 0$

\[
(3.7) \quad t f^\#_{H_1}(t) \leq c \| f \|_{H_1}
\]

Proof. From (3.6), we have

\[
(3.8) \quad t f^\#_{H_1}(t) \leq ct M(E)^*(t) \leq c \| Mf \|_{L_1} \leq c \| f \|_{H_1}
\]

because M is of weak type $(1,1)$. □

Proof of lower estimate in (3.1).

Suppose $f = b^g$ with $b \in H_1$ and $g \in \text{BMO}$. Since P_ϕ is a linear operator, it follows that $F + F^\#_{H_1}$ is sub-linear. Using this and (3.5), we have

\[
f^\#_{H_1} \leq b^\#_{H_1} + g^\#_{H_1} \leq b^\#_{H_1} + \| g^\#_{H_1} \|_{L_\infty}
\]

\[
\leq b^\#_{H_1} + c \| s \|_{\text{BMO}}, \quad \text{a.e.,}
\]

854
Hence from Corollary 3.5,

\[tf^{\#\#}_{H_1}(t) \leq t b^{\#\#}_{H_1}(t) + ct \|g\|_{BMO} \leq c(\|b\|_{H_1} + t \|g\|_{BMO}) \]

Taking now an inf over all such decompositions \(f = b + g \) gives the lower inequality in (3.1).

4. The upper estimate. To prove the upper estimate

\[K(f,t,H_1,BMO) \leq ct f^{\#\#}_{H_1}(t) \]

We need to decompose \(f \) as \(f = b + g \) with \(b \in H_1 \) and \(g \in BMO \) satisfying

\[\|b\|_{H_1} + t \|g\|_{BMO} \leq ct f^{\#\#}_{H_1}(t) \]

The decomposition we give is similar to that given in [4] for \(H_1 \) and \(L_\infty \).

Fix \(t > 0 \) and let \(E := \{x; f^{\#\#}_{H_1}(x) > f^{\#\#}_{H_1}(t)\} \). Then \(E \) is an open set with \(|E| \leq t \). Let \((Q_j)^\infty \) be a Whitney decomposition of \(E \) into dyadic cubes with \(d_j := \text{diam } (Q_j) \) and the usual properties [6, p. 167]:

(4.1) \[i) \quad \bigcup_{j \in \mathbb{Z}} Q_j = E \]

\[ii) \quad |Q_i \cap Q_j| = 0, \quad i \neq j. \]

\[iii) \quad d_j \leq \text{dist } (Q_j,E^c) \leq 4d_j, \quad j=1,2,... \]

\[iv) \quad \text{If } Q_i \text{ touches } Q_j, \text{ then } \text{diam } Q_i \leq 4 \text{ diam } Q_j. \]

\[v) \quad \text{Any point } x \in E \text{ appears in at most } N_0 \text{ of the cubes } Q_j, \quad j=1,2,... \text{ with } N_0 \text{ depending only on } n. \]

If we let \(Q_j^* := \frac{3}{8} Q_j \), then there is a partition of unity \((\phi_j^*)\) (denoted by \((\phi_j^*)^\infty \) in [5]) subordinate to \((Q_j^*)\) with the properties

(4.2) \[i) \quad \sum_{j \in \mathbb{Z}} \phi_j^* = 1 \text{ on } E \]

\[ii) \quad \text{support of } \phi_j \text{ is contained in } Q_j^*, \quad j=1,2,... \]

\[iii) \quad 0 \leq \phi_j \leq 1 \text{ and } \phi_j \equiv 1 \text{ on } \frac{3}{4} Q_j. \]

\[iv) \quad \|D^\nu \phi_j\|_{L_\infty} \leq c d_j^{-|\nu|}, \quad \text{for all } \nu \text{ and } j. \]

855.
With the abbreviated notation $P_j := P_{\phi_j}$, we define our decomposition for f by

$$g := \sum_{j=1}^{\infty} (P_j f) \phi_j + f \chi_{E_c} ; \quad b := \sum_{j=1}^{\infty} (f - P_j f) \phi_j$$

We begin by estimating the norm of b in H_1. This is particularly simple since if $Q_j := 10 \sqrt{n} Q_j$ then $Q_j \cap E_c \neq \emptyset$ and therefore there is a point $x \in Q_j \cap E_c$. Since $\phi_j \in \Phi_{Q_j}$,

$$\| (f - P_j f) \phi_j \|_{H_1} \leq |Q_j| \int_{E_c} |x_j| f_{H_1}^\#(x_j) \leq c |Q_j| f_{H_1}^\#(t)$$

Adding these estimates gives

$$\| b \|_{H_1} \leq c \sum_{j=1}^{\infty} |Q_j| f_{H_1}^\#(t) \leq c |E| f_{H_1}^\#(t) \leq c t f_{H_1}^\#(t).$$

The estimate of the norm of g in BMO is somewhat more involved but similar to the Bennett-Sharples argument [1,56].

Lemma 4.1. We have $\| g \|_{\text{BMO}} \leq c f_{H_1}^\#(t)$ with c depending only on n.

Proof. Let Q be a cube in E_c. According to (3.2), it is enough to show that there is a constant α such that

$$\int_Q |g - \alpha| \leq c |Q| f_{H_1}^\#(t)$$

Let $A := \{ i : Q_i \cap Q \neq \emptyset \}$. We shall consider three cases.

Case 1. $A = \emptyset$. Then $Q \subset E_c$ and $g = f$ on Q, so we may take $\alpha = f_Q$ and the lower estimate in (3.2) to find

$$\int_Q |g - \alpha| \leq |Q| \inf_{Q} f_{Q}^\# \leq c |Q| \int_{E_c} f_{H_1}^\# \leq c |Q| f_{H_1}^\#(t)$$

because $f_{H_1}^\# \leq f_{H_1}^\#(t)$ on E_c.

Case 2. There is an $i \in A$ with $\text{diam}(Q) \leq \frac{1}{64} \text{diam}(Q_i)$ for some $i \in A$.

For the proof in this case we will use the fact that for each $h \in L_1(Q_i)$,
(4.7) \[\left\| P_i(h) \right\|_{L^\infty(Q_i^*)} \leq \frac{c}{|Q_i^*|} \int_{Q_i^*} |P_i(h)| \leq \frac{c}{|Q_i^*|} \int_{Q_i^*} |h|, \ i = 1, 2, \ldots. \]

The first inequality in (4.7) is simply a comparison of polynomial norms (see e.g. [2, §3]) and the second is the boundedness of the projection \(P_i \) on \(L_1(Q_i^*) \) which in turn follows from (2.13).

Now let \(Q_{j_0} \) be a largest cube among the \(Q_i \) with \(i \in \Lambda \). Then

\[Q \subseteq \frac{33}{32} Q_{j_0}^* \subseteq \frac{5}{4} Q_{j_0} \subset E. \]

If \(i \in \Lambda \), then \(\frac{5}{4} Q_i = Q_i^* \) intersects \(Q \) and hence intersects \(\frac{5}{4} Q_{j_0} \).

It follows from (4.1)iv that \(Q_i^* \) and \(Q_{j_0} \) touch and therefore \(Q_i^* \subset 4Q_{j_0} \).

Define \(\tilde{Q} := 10 \sqrt{n} Q_{j_0} \) and \(\alpha := \frac{\tilde{Q}}{Q} \). According to (4.2)ii) \(\tilde{Q} \cap E = \emptyset \) and therefore using (4.7) and (2.13) gives

\[(4.9) \quad \int_{Q \cap E \setminus \tilde{Q}} = \int_{\bigcup_{i \in \Lambda \cap \tilde{Q} \cap E} P_i(\alpha \phi_i) \geq \sum_{i \in \Lambda \cap \tilde{Q} \cap E} \int_{Q_i \cap \tilde{Q}} |P_i(\alpha \phi_i)| \]

\[\leq \sum_{i \in \Lambda \cap \tilde{Q} \cap E} \frac{|Q_i \cap \tilde{Q}|}{|Q_i^*|} \int_{Q_i^*} |f - \phi_i| \leq c \sum_{i \in \Lambda \cap \tilde{Q} \cap E} \frac{|Q_i \cap \tilde{Q}|}{|Q_i^*|} \int_{Q_i^*} |f - \phi_i| \]

\[\leq c \left(\inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \right) \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \leq c |\tilde{Q}| \inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \leq c |\tilde{Q}| \inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \]

where the third to last inequality uses the fact that \(|Q_i \cap \tilde{Q}| \geq \frac{1}{4} |Q_i^*| \),

because \(Q_i \) touches \(Q_{j_0} \); the second to last inequality uses the fact that \(|\tilde{Q}| \leq (10\sqrt{n})^n |Q_{j_0}| \); and the last inequality uses (3.2) and the fact that \(\tilde{Q} \cap E = \emptyset \).

Case 3. \(\Lambda \neq \emptyset \) and for all \(i \in \Lambda \), \(\text{diam}(Q_i) \leq 64 \text{diam}(Q) \). In this case \(Q_i \subset Q_i^* \subset 129Q \) for all \(i \in \Lambda \). Define \(\tilde{Q} := 1290 \sqrt{n} Q \). Since \(10\sqrt{n} Q_i \) touches \(E \cap Q \) and is contained in \(\tilde{Q} \), we have \(\tilde{Q} \cap E \neq \emptyset \). We let \(\alpha := \frac{\tilde{Q}}{Q} \).

Using (4.7) and (4.1), we have

\[(4.10) \quad \int_{Q \cap E \setminus \tilde{Q}} = \int_{Q \cap E \setminus \tilde{Q}} P_i(\alpha \phi_i) \geq \sum_{i \in \Lambda \cap \tilde{Q} \cap E} \int_{Q_i \cap \tilde{Q}} |P_i(\alpha \phi_i)| \]

\[\leq \sum_{i \in \Lambda \cap \tilde{Q} \cap E} \frac{1}{|Q_i^*|} \int_{Q_i^*} |f - \phi_i| \]

\[\leq c \left(\inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \right) \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \leq c |\tilde{Q}| \inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \leq c |\tilde{Q}| \inf_{Q} \left| \frac{\tilde{Q}}{Q} \right| \frac{1}{|Q|} \int_{Q \cap \tilde{Q}} |f - \phi_i| \]
\[\leq c \sum_{i \in A} f_i \int_{Q_i} |f-\alpha| + \int_{Q_0} f - \alpha \leq c |Q_0| \inf_{Q_0} f^\theta \leq c |Q_0| \inf_{Q_0} f^\theta (\tau). \]

The three estimates (4.8–10) combine to prove (4.5).

Lemma 4.1 and the estimate (4.4) shows that \(f = b + g \) with

\[\|b\|_{H^1} + \tau \|g\|_{BMO} \leq c \tau f^\theta (\tau) \]

which establishes the upper estimate in (3.1) and completes the proof of Theorem 3.1.

5. Acknowledgement. The problem of characterizing the \(K \) functional for \((H^1, BMO) \) was posed to me by my colleagues, C. Bennett and R. Sharp. I thank them for this and various discussions concerning this work.

6. Postscript. I have recently heard that Björn Jawerth has also given a characterization of \(K(f, \tau, H^1, BMO) \) using the area integral. His paper has the same title as this paper and will appear in the Proceedings of the American Math. Soc.

References.

5. Hanks, R.: Interpolation by the real method between \(BMO, L^{\alpha}(0 < \alpha < \infty) \) and \(H^0(0 < \alpha < \infty) \). Indiana Univ. Math. J. 26, 679–684 (1977).