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Abstract

In 2005, Shen introduced a new invariant, G(N), of a di�use von

Neumann algebra N with a �xed faithful trace, and he used this in-

variant to give a uni�ed approach to showing that large classes of II1
factors M are singly generated. This paper focuses on properties of

this invariant. We relate G(M) to the number of self-adjoint genera-

tors of a II1 factor M : if G(M) < n/2, then M is generated by n + 1
self-adjoint operators, whereas if M is generated by n + 1 self-adjoint

operators, then G(M) ≤ n/2. The invariant G(·) is well-behaved under

ampli�cation, satisfying G(Mt) = t−2G(M) for all t > 0. In particular,

if G(LFr) > 0 for any particular r > 1, then the free group factors

are pairwise non-isomorphic and are not singly generated for su�-

ciently large values of r. Estimates are given for forming free products

and passing to �nite index subfactors and the basic construction. We

also examine a version of the invariant Gsa(M) de�ned only using self-

adjoint operators; this is proved to satisfy Gsa(M) = 2G(M). Finally

we give inequalities relating a quantity involved in the calculation of

G(M) to the free-entropy dimension δ0 of a collection of generators for

M .
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1 Introduction

An old problem in von Neumann algebra theory is the question of whether
each separable von Neumann algebra N is singly generated. A single gener-
ator x leads to two self-adjoint generators {x + x∗, i(x − x∗)} and any pair
{h, k} of self-adjoint generators yields a single generator h + ik. Thus the
single generation problem has an equivalent formulation as the existence of
two self-adjoint generators. Earlier work in this area solved all cases except
for the �nite von Neumann algebras, [1, 15, 21, 25]. Here there has been
progress in special situations, [8, 9, 18], but a general solution is still un-
available. Recently Shen, [18], introduced a numerical invariant G(N), and
was able to show that single generation for II1 factors was a consequence
of G(N) < 1/4. He proved that G(N) = 0 for various classes of II1 factors,
establishing that von Neumann algebras in these classes are singly generated.
His work settled some previously unknown cases as well as giving a uni�ed
approach to various situations that had been determined by diverse meth-
ods. It should be noted that 0 is the only value of the Shen invariant that is
currently known. If strictly positive values are possible, then Corollary 5.1
guarantees examples of separable II1 factors which are not singly generated.

In this paper, our purpose is to undertake a further investigation of this
invariant, and to relate it to a quantity Gmin(M) which counts the minimal
number of generators for M . A related quantity Gmin

sa (M) counts the minimal
number of self-adjoint generators, and there is a parallel invariant Gsa(M)
to G(M) which has a similar de�nition (given below) but which restricts
attention to self-adjoint generating sets.

The contents of the paper are as follows. The second section gives the
de�nitions of G(N) and Gsa(N) in terms of generating sets and �nite decom-
positions of 1 as sums of orthogonal projections. This is a slightly di�erent
but equivalent formulation of the original one in [18]. These are related by
the inequalities G(N) ≤ Gsa(N) ≤ 4G(N), although it is shown subsequently
that G(M) = 2Gsa(M) for all II1 factors M . The main result of the third
section is that the relation G(M) < n/2 for II1 factors M implies generation
by n + 1 self-adjoint elements. The case n = 1 is of particular interest since
single generation is then a consequence of G(M) < 1/2.

The fourth section relates the generator invariant of a II1 factor M to
that of a compression pMp. If τ(p) = t, then G(pMp) = t−2G(M). Up to
isomorphism, Mt can be uniquely de�ned as pMp for any projection p ∈ M
with τ(p) = t, 0 < t < 1. In a standard way, Mt can be de�ned for any
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t > 0 as p(Mn⊗M)p where n is any integer greater than t, and p ∈ Mn⊗M
is a projection of trace t/n < 1. In this more general situation, the scaling
formula G(Mt) = t−2G(M) for t > 0 also holds. The subsequent section
contains some consequences of the scaling formula, and also establishes it
for the related invariant Gsa(M). This requires a more indirect argument
since the method of passing between generating sets for M and for Mt does
not preserve self-adjointness and so cannot apply to Gsa(Mt) although it is
suitable for G(Mt). The equality Gsa(M) = 2G(M) is also established in this
section.

The sixth section is concerned with �nite index inclusions N ⊆ M of
II1 factors. The main results are that G(〈M, eN〉) ≤ G(M) and that G(N) =
λ2G(〈M, eN〉), where 〈M, eN〉 is the basic construction and λ denotes the
index [M : N ]. A standard result of subfactor theory is that M is the
basic construction 〈N, eP 〉 for an index λ inclusion P ⊆ N , so two of these
basic constructions scale G(·) by λ2. This suggests the formula G(〈M, eN〉) =
λG(M), but this is still an open problem.

Section 7 concentrates on free group factors and their generalisations, the
interpolated free group factors. For r ∈ (0,∞], the formula G(LF1+r) = rα
is established, where α is a �xed constant in the interval [0, 1/2]. This leads
to two possibilities, depending on the value of α. If α = 0, then L(F1+r) is
singly generated for all r > 0, while if α > 0, then the free group factors
are pairwise non-isomorphic, being distinguished by the generator invariant.
The paper concludes with a discussion of Voiculescu's modi�ed free entropy
dimension δ0(X), where X is a �nite generating set for M . A quantity I(X)
is introduced in the second section on the way to de�ning G(M). The main
results of the last section are the inequalities δ0(X) ≤ 1 + 2I(X) for general
�nite generating sets, and the stronger form δ0(X) ≤ 1+I(X) for generating
sets of self-adjoint elements. These have the potential for providing lower
bounds for G(M).

Finally, a word on notation. For a subset X of a von Neumann algebra
M , W ∗(X) will denote the von Neumann algebra generated by X. It is not
assumed that W ∗(X) automatically contains the identity of M . For example,
W ∗(p) = Cp for a projection p ∈ M .
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2 The generator invariant

The main focus of the paper is on II1 factors. However we de�ne the gener-
ator invariant and establish basic results in the context of di�use �nite von
Neumann algebras with a �xed faithful trace τ , which is normalised with
τ(1) = 1. Di�use �nite von Neumann algebras will be denoted by N , while
M is reserved for II1 factors.

De�nition 2.1. Let (N, τ) be a �nite von Neumann algebra with �xed trace.
Let P (or P(N) when the underlying algebra is unclear) denote the collection
of all �nite sets of mutually orthogonal projections in N which sum to 1. An
important subclass of P is the collection Peq of those P which consist of
projections of equal trace. Note that in the context of a �nite factor M ,
P = {p1, . . . , pk} ∈ Peq(M) can be diagonalised in the sense that there exist
matrix units (ei,j)

k
i,j=1 in M satisfying ei,i = pi for all i. In this factor context,

the elements of Peq are referred to as the diagonalisable elements of P .

De�nition 2.2. Consider P, Q ∈ P . Then Q re�nes P , written Q � P , when
every p ∈ P is a sum of elements of Q. The sets P and Q are equivalent,
written P ∼ Q, when there is a unitary u ∈ N with uPu∗ = Q. Note that in
a II1 factor, P ∼ Q if, and only if, the multiset of the traces of the elements
of P is the same as the multiset of the traces of the elements in Q.

The ordering Q � P de�ned above is chosen so that the map P 7→
I(X; P ) below is order preserving. This will be established in Lemma 2.5.

De�nition 2.3. Let N be a �nite von Neumann algebra. Given x ∈ N and
P ∈ P , de�ne

I(x; P ) =
∑

p,q∈P
pxq 6=0

τ(p)τ(q).

For a �nite subset X ⊂ N and P ∈ P , de�ne

I(X; P ) =
∑
x∈X

I(x; P ),

and
I(X) = inf

P∈P
I(X; P ). (2.1)

On occasion, the notation IN(X; P ) and IN(X) will emphasise the algebra
N and hence the choice of trace.
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The de�nition of I given above is formally di�erent from that of Shen [18,
De�nition 2.1], in that Shen only considers families from Peq and performs the
limiting procedure in a slightly di�erent order. Nevertheless, the resulting
invariant G(N) de�ned in De�nition 2.7 below agrees with [18, De�nition
2.1] in the case of di�use von Neumann algebras. Before proceeding, a few
elementary observations are recorded.

Remarks 2.4. 1. The inequality

0 ≤ I(X) ≤ I(X; P ) ≤ |X|

holds for all �nite subsets X in N and all P ∈ P .

2. If X is a �nite subset of N , then de�ne X∗ = { x∗ | x ∈ X }. The
equality

I(X∗; P ) = I(X; P )

holds for all P ∈ P .

3. Let P ∈ P be a set of k projections. The estimate

I(x; P ) =
∑
p∈P
px6=0

τ(p)2 ≤ k max
{

τ(p)2
∣∣ p ∈ P }

is valid for each x ∈ N ∩ P ′. In particular, if P ∈ Peq, then

I(x; P ) ≤ k−1.

4. If X = {x1, . . . , xm} ⊂ N and P = {p1, . . . , pk} ∈ Peq then

I(X; P ) = k−2 |{ (i, j, l) | pixlpj 6= 0 }| .

Writing I(X; P ) in this way is often useful in calculations, an example
being [18, Theorem 4.1].

5. For any z1, z2 ∈ N and P ∈ P ,

I(z1 + z2; P ) ≤ I(z1; P ) + I(z2; P ). (2.2)
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6. If X is a �nite generating set of N , then so also is

Y = { x + ix∗, i(x− ix∗) | x ∈ X }

and, furthermore,

I(X; P ) ≤ I(Y ; P ) ≤ 4I(X; P ).

This follows from the preceding remark. Take z1 = x + ix∗ and z2 =
x − ix∗ for each x ∈ X to obtain I(X; P ) ≤ I(Y ; P ). Now let Y1 =
{ x + ix∗ | x ∈ X } and Y2 = { i(x− ix∗) | x ∈ X } so that (2.2) and
item 2 above combine to give

I(Y1; P ) ≤ 2I(X; P ) and I(Y2; P ) ≤ 2I(X; P ). (2.3)

Lemma 2.5. Let N be a �nite von Neumann algebra. Consider a �nite
subset X ⊂ N and P, Q ∈ P with Q � P . Then

I(X; Q) ≤ I(X; P ).

Proof. Take x ∈ N and two pairs of orthogonal projections (e1, e2) and
(f1, f2) in N . If (e1 + e2)x(f1 + f2) 6= 0, then∑

i,j
eixfj 6=0

τ(ei)τ(fj) ≤ τ(e1 + e2)τ(f1 + f2).

The result now follows by induction.

In many applications it will be useful to know that the in�mum de�n-
ing G(X) in (2.1) can be taken through Peq. Recall that a separable dif-
fuse abelian von Neumann algebra A is isomorphic to L∞[0, 1] and, if A is
equipped with a trace, then this isomorphism can be chosen so that the trace
is given by

∫ 1

0
· dt on L∞[0, 1].

Lemma 2.6. Let N be a di�use von Neumann algebra and let X be a �nite
subset of N . For each n ∈ N,

I(X) = inf { I(X; P ) | P ∈ Peq, |P | = nl some l ∈ N }
= lim

l→∞
(inf { I(X; P ) | P ∈ Peq, |P | = nl }).
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Proof. Fix ε > 0 and �nd Q = {q1, . . . , qk} ∈ P with

I(X; Q) ≤ I(X) + ε. (2.4)

Let A be a di�use abelian subalgebra of N with Q ⊂ A, and let

δ =
ε

2|X|k
. (2.5)

By approximating the family τ(q1), . . . , τ(qk) by rational numbers with com-
mon denominator nl, there exists l0 ∈ N such that if l ≥ l0, then there are
r1, . . . , rk ∈ N with

ri

nl
≤ τ(qi) ≤

ri

nl
+ δ

for each i. Choose projections p1, . . . , pk in A with 0 ≤ pi ≤ qi and τ(pi) =
ri/nl for each i. Let pk+1 = 1 −

∑k
i=1 pi, so τ(pk+1) ≤ kδ. Let P0 =

{p1, . . . , pk+1} ∈ P . Thus qixqj 6= 0 whenever pixpj 6= 0. Hence

I(X; Q) =
∑
x∈X

∑
1≤i,j≤k
qixqj 6=0

τ(qi)τ(qj) ≥
∑
x∈X

∑
1≤i,j≤k
pixpj 6=0

τ(pi)τ(pj). (2.6)

Now

I(X; P0) ≤
∑
x∈X

∑
1≤i,j≤k
pixpj 6=0

τ(pi)τ(pj)

+ |X|

(
k∑

i=1

τ(pi)τ(pk+1) +
k∑

j=1

τ(pk+1)τ(pj) + τ(pk+1)
2

)
≤ I(X; Q) + 2|X|τ(pk+1)

≤ I(X; Q) + 2k|X|δ ≤ I(X; Q) + ε,

by inequality (2.6), the estimate τ(pk+1) ≤ kδ and the choice of δ in (2.5).
Finally, re�ne P0 to �nd a family P � P0 in Peq with nl elements. Lemma
2.5 gives

I(X) ≤ I(X; P ) ≤ I(X; P0) ≤ I(X; Q) + ε < I(X) + 2ε,

by (2.4). Since this can be done for any l ≥ l0, and ε > 0 was arbitrary, the
result follows.
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These preliminaries allow the generator invariant of a di�use �nite von
Neumann algebra to be de�ned.

De�nition 2.7. If N is a �nitely generated di�use �nite von Neumann al-
gebra, de�ne the generator invariant G(N) by

G(N) = inf { I(X) | W ∗(X) = N, X is a �nite subset of N } ,

and the hermitian, (or self�adjoint), generator invariant, Gsa(N) by

Gsa(N) = inf { I(X) | W ∗(X) = N, X is a �nite subset of Nsa } .

If N is not �nitely generated, then de�ne G(N) = Gsa(N) = ∞.

Remark 2.8. By item 2.3 of Remarks 2.4, the inequalities

G(N) ≤ Gsa(N) ≤ 4G(N)

hold for any di�use �nite von Neumann algebra N . In Theorem 5.5 it will
be shown that G(M) = 2Gsa(M) for all II1 factors M .

3 The generation theorem

Theorem 4.1 of [18] states that if a II1 factor M has G(M) < 1/4, then it
is generated by a projection and a hermitian element. It is subsequently
remarked that the same proof shows that a II1 factor M with G(M) < 1/2
is singly generated. The theorem below strengthens this result to consider
II1 factors which may not be singly generated, with Shen's remark arising
from the case n = 1. The basic idea is the same combinatorical counting
argument of [18] which dates back through [8] and [9] to work in the 1960's
by Douglas, Pearcy and Wogen, [1, 15, 25]. A good account of this material
can be found in the book by Topping, [21].

Recall that if (ei,j)
k
i,j=1 are matrix units for the k × k matrices, Mk(C),

then the self�adjoint elements
∑k−1

i=1 (ei,i+1 + ei+1,i) and ek,k generate Mk(C).

Theorem 3.1 (The generation theorem). Let M be a separable II1 factor and
n ∈ N. If G(M) < n/2, then M is generated by n + 1 hermitian elements.
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Proof. Suppose that G(M) < n/2 for some n ∈ N. There exists k0 ∈ N such
that

G(M) <
n

2
−
(

n + 2

2k
− 1

k2

)
for all k ≥ k0. By Lemma 2.6, there is a �nite set X = {x1, . . . , xm} of
generators for M , some k ≥ k0 and a diagonalisable family P = {e1, . . . , ek} ∈
Peq such that

I(X; P ) <
n

2
−
(

n + 2

2k
− 1

k2

)
. (3.1)

Choose a set of matrix units (ei,j)
k
i,j=1 in M with ei,i = ei for each i. De�ne

a set of triples

T = { (i, j, l) | 1 ≤ i, j ≤ k, 1 ≤ l ≤ m, eixlej 6= 0 } (3.2)

so the de�nition of I(X; P ) gives

I(X; P ) = k−2|T |. (3.3)

For each r = 1, . . . , n− 1, let Sr be the set of triples (s, t, r) with 1 ≤ s <
t ≤ k and let Sn be the set of triples (s, t, n) with 1 ≤ s < t ≤ k − 1. Then∣∣∣∣∣

n⋃
q=1

Sq

∣∣∣∣∣ =
(n− 1)k(k − 1)

2
+

(k − 1)(k − 2)

2
=

nk2

2
− (n + 2)k

2
+ 1.

By the choice of k ≥ k0,

|T | < nk2

2
− (n + 2)k

2
+ 1 =

∣∣∣∣∣
n⋃

r=1

Sr

∣∣∣∣∣ ,
from (3.1) and (3.3).

Decompose T into a partition
⋃n

r=1 Tr with each |Tr| ≤ |Sr| and �nd, for
each r, injections Tr → Sr, written as (i, j, l) 7→ (s(i, j, l), t(i, j, l), r). This
really de�nes n maps indexed by r, but as the domains Tr and ranges Sr are
disjoint, these are regarded as a single map from T =

⋃
Tr to

⋃
Sr. De�ne

self�adjoint operators

yr =
∑

(i,j,l)∈Tr

(es(i,j,l),ixlej,t(i,j,l) + et(i,j,l),jx
∗
l ei,s(i,j,l))
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for 1 ≤ r ≤ n.
If 1 ≤ r ≤ n and (i1, j1, l1) ∈ Tr ⊂ T , then (s(i1, j1, l1), t(i1, j1, l1))

appears exactly once in the set

{ (s, t), (t, s) | (s, t, r) ∈ Sr }

as Sr is disjoint from its transpose on the �rst two variables and the map
Tr → Sr is an injection. For such (i1, j1, l1) ∈ Tr,

ei1,s(i1,j1,l1)yret(i1,j1,l1),j1 = ei1,s(i1,j1,l1)es(i1,j1,l1),i1xl1ej1,t(i1,j1,l1)et(i1,j1,l1),j1

= ei1xl1ej1 6= 0. (3.4)

As T =
⋃n

r=1 Tr, equation (3.4) and the de�nition of T in (3.2) imply that

xl =
∑

(i,j,l)∈T

ei,ixlej,j =
n∑

r=1

∑
(i,j,l)∈Tr

ei,s(i,j,l)yret(i,j,l),j),

for each l = 1, . . . ,m. Thus the set {y1, . . . , yn} ∪ { ei,j | 1 ≤ i, j ≤ k } gen-
erates the II1 factor M .

Finally note that ek,kyn = ynek,k = 0 so that yn, ek,k ∈ W ∗({yn + λek,k})
for any λ > ‖yn‖ by the spectral theorem. In this way M is generated by
the n + 1 hermitian elements

y1, . . . , yn−1, yn + λek,k, and
k−1∑
i=1

(ei,i+1 + ei+1,i),

as required.

Remark 3.2. In Corollary 5.7, it will be shown that if M is generated by
n + 1 hermitian elements, then G(M) ≤ n/2, which almost gives a converse
to this result. The remaining gap is summarised in the following question.

Question 3.3. Let M be a II1 factor. If G(M) = n/2 for some n ∈ N, is M
generated by n + 1 hermitians?

4 A scaling formula

This section examines the behaviour of G(M) under ampli�cations and com-
pressions. Theorem 4.5 establishes that

G(Mt) = t−2G(M) (4.1)
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for all II1 factors M and t > 0. Note that it is a consequence of equation
(4.1) that M is �nitely generated if and only if Mt is �nitely generated for
all t > 0. This result is deduced in Lemma 4.4 from the lemmas that will be
needed to prove equation (4.1).

Lemma 4.1. Let M be a separable II1 factor and let n ∈ N. Then

G(Mn−1) ≤ n2G(M).

Proof. Assume that G(M) < ∞ as otherwise the lemma is vacuous. Let
ε > 0. By Lemma 2.6, there is a �nite generating set X for M , some k ∈ N
and a diagonalisable P = {e1, . . . , enk} ∈ Peq such that I(X; P ) < G(M)+ε.
Find matrix units (ei,j)

nk
i,j=1 in M with ei,i = ei. De�ne

fr,s =
k∑

i=1

e(r−1)k+i,(s−1)k+i

for r, s = 1, . . . , n. The family (fr,s)
n
r,s=1 is a system of matrix units in M .

Consider f = f1,1, a projection of trace n−1 so fMf is a representative of
Mn−1 .

The von Neumann algebra fMf is generated by
⋃n

r,s=1 f1,rXfs,1 using
induction on the equation

fxyf =
n∑

r=1

f1,1xfr,1f1,ryf1,1,

see for example [24, Lemma 5.2.1]. Consider Q = {e1, . . . , ek}, a family of
orthogonal projections in fMf with sum f , so Q is a diagonalisable element
of Peq(fMf). For x ∈ X, i, j = 1, . . . , k and r, s = 1, . . . , n the relation
eif1,rxfs,1ej 6= 0 is equivalent to e(r−1)k+ixe(s−1)k+j 6= 0 since

eif1,rxfs,1ej = ei,(r−1)k+ixe(s−1)k+j,j.

Let C be the number of quintuples (i, j, r, s, x) with this property.
Since each projection in Q has trace k−1 in fMf , it follows that

IfMf (
n⋃

r,s=1

f1,rXfs,1; Q) = C
1

k2
,
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whereas

IM(X; P ) = C
1

n2k2
.

Therefore

G(Mn−1) = G(fMf)

≤ IfMf

(
n⋃

r,s=1

f1,rXfs,1; Q

)
= n2IM(X; P ) ≤ n2G(M) + n2ε,

from which the lemma follows.

Remark 4.2. It does not appear to be possible to obtain

Gsa(Mn−1) ≤ n2Gsa(M) (4.2)

using the methods of Lemma 4.1, since a self�adjoint generating set X leads
to a generating set

⋃n
r,s=1 f1,rXfs,1 for fMf which is not necessarily self�

adjoint. Nevertheless inequality (4.2) is true, as will be established in Corol-
lary 5.6 from the scaling formula of Theorem 4.5 and Theorem 5.5.

The next lemma provides one inequality in (4.1) and also the parallel
inequality for the hermitian�generator invariant.

Lemma 4.3. Let M be a separable II1 factor and 0 < t < 1. Then

G(M) ≤ t2G(Mt) and Gsa(M) ≤ t2Gsa(Mt).

Proof. Assume that Mt is �nitely generated, otherwise there is nothing to
prove. Fix a projection p ∈ M of trace t so that pMp is a representative of
Mt and let X be an arbitrary �nite set of generators for pMp.

For ε > 0, �nd orthogonal projections E = {e1, . . . , en} ∈ PpMp such that

IpMp(X; E) = t−2
∑
x∈X

∑
eixej 6=0

τM(ei)τM(ej) < IpMp(X) + ε. (4.3)

The factor t−2 arises in (4.3) as τMt(y) = t−1τM(y) for y ∈ Mt. Let m be the
maximal integer such that mt ≤ 1 and �nd a family of orthogonal projections
p1, . . . , pm+1 in M such that:
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i. p1 = p;

ii. τ(pi) = τ(p), for i = 2, . . . ,m;

iii.
∑m+1

i=1 pi = 1.

In this way 0 ≤ τ(pm+1) < τ(p) with pm+1 possibly the zero projection. Let
v1 = p1 and �nd partial isometries v2, . . . , vm+1 ∈ M such that:

1. viv
∗
i = pi, for each i = 2, . . . ,m + 1;

2. v∗i vi = p1, for i = 2, . . . ,m;

3. v∗m+1vm+1 is a subprojection of p1 of the form
∑k−1

j=1 ej + ẽk+1 for some
k ∈ {1, . . . , n} and some ẽk ≤ ek.

It will now be shown that

Y = X ∪ {v2, . . . , vm+1} (4.4)

generates the II1 factor M . Since X generates pMp, it follows that pMp ⊂
W ∗(Y ). The relations

piMpj = viv
∗
i Mvjv

∗
j = vipv

∗
i Mvjpv

∗
j ,

for 1 ≤ i, j ≤ m + 1, then imply that

piMpj ⊂ vipMpv∗j ⊂ viW
∗(Y )v∗j ⊂ W ∗(Y ),

and so Y generates M .
The �nal step is to estimate I(Y ). Let F be a set of mutually orthogonal

projections with sum p that re�nes {e1, . . . , ek−1, ẽk, ek−ẽk, ek+1, . . . , en} such
that

max
f∈F

τ(f) <
ε

m
. (4.5)

Thus F ∈ PpMp and F � E. Extend F to a family

G = { vifv∗i | 1 ≤ i ≤ m + 1, f ∈ F }

of projections. Then G ⊃ F and the sum of the orthogonal projections in G
is 1 so G ∈ PM . Fix i ∈ {2, . . . ,m + 1} and note that if vjf1v

∗
j vivkf2v

∗
k 6= 0

for some j, k and f1, f2 ∈ F , then j = i (as otherwise v∗j vi = 0) and k = 1
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(as otherwise vivk = 0); when these conditions hold f1 = f2 (as f1v
∗
j vivkf2 =

f1p1f2 = f1f2). Thus

IM(vi; G) ≤
∑
f∈F

τ(f)2 ≤ max
f∈F

τ(f) <
ε

m
, (4.6)

and Lemma 2.5 and (4.3) imply that

IM(X; G) = IM(X; F ) ≤ IM(X; E)

=
∑

e1,e2∈E,x∈X
e1xe2 6=0

τ(e1)τ(e2) < t2IpMp(X) + εt2. (4.7)

Finally

G(M) ≤ IM(Y ; G) = IM(X; F ) +
m+1∑
i=2

IM(vi; G)

≤ IM(X; E) + ε < t2IpMp(X) + εt2 + ε. (4.8)

The inequality G(M) ≤ t2G(Mt) then follows, as ε > 0 was arbitrary and X
was an arbitrary �nite generating set for pMp.

Only minor modi�cations are necessary for the hermitian case. Assume
that each element of X is self-adjoint, and replace the partial isometries vi

in (4.4) by the self-adjoint elements vi + v∗i and i(vi − v∗i ). Then the same
arguments lead to the inequality

Gsa(M) < t2IpMp(X) + εt2 + 4ε,

for any �nite generating set X consisting of self-adjoint elements. The factor
of 4, which was not present in the counterpart inequality (4.8), arises from
the estimate

m+1∑
i=2

IM(vi + v∗i ; G) +
m+1∑
i=2

IM(i(vi − v∗i ); G) ≤ 4
m+1∑
i=2

IM(vi; G) < 4ε.

This change re�ects the replacement of vi by vi + v∗i and i(vi − v∗i ) in the
generating set Y of (4.4).

Lemma 4.4. Let M be a II1 factor and let t > 0. Then Mt is �nitely
generated if, and only if, M is �nitely generated.

14



Proof. Without loss of generality, suppose that 0 < t < 1, otherwise replace
t by t−1. Lemma 4.3 shows that if Mt is �nitely generated so too is M .
Conversely, if M is �nitely generated, choose n ∈ N with n−1 < t. Lemma
4.1 shows that Mn−1 is �nitely generated. Let s = n−1t−1. Since 0 < s < 1
and (Mt)s = Mn−1 is �nitely generated, another application of Lemma 4.3
shows that Mt is �nitely generated.

Theorem 4.5 (The Scaling Formula). Let M be a separable II1 factor. For
each t > 0,

G(Mt) = t−2G(M). (4.9)

Proof. This formula will be established by considering successively the cases
t ∈ Q, t ∈ (0, 1) and t ∈ (1,∞).

By Lemma 4.4, M is in�nitely generated if, and only if, Mt is in�nitely
generated. Assume then that both M and Mt are �nitely generated. For
n ∈ N and any separable II1 factor M , the equation

G(Mn−1) = n2G(M) (4.10)

is a consequence of the inequalities of Lemma 4.1 and Lemma 4.3. Let t = p/q
be a rational and apply (4.10) twice. This gives

G(Mt−1) = G((Mq)p−1) = p2G(Mq)

and

G(M) = G((Mq)q−1) = q2G(Mq) =
q2

p2
G(Mt−1).

This proves the theorem for rational t.
For arbitrary 0 < t < 1, consider 0 < s < 1 such that st ∈ Q. Then

G(M) ≤ t2G(Mt) ≤ s2t2G(Mst) = G(M) (4.11)

by applying Lemma 4.3 twice and the rational case above. Hence G(M) =
t2G(Mt).

If t > 1, then

G(M) = G((Mt)t−1) = t2G((Mt)t−1t) = t2G(Mt).

This deals with all possible cases and so completes the proof.
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5 Consequences of scaling

This section contains an initial collection of deductions from the scaling for-
mula. Results regarding the free group factors and estimates involving free
products are reserved to Section 7. Note that there is currently no example
for which the hypothesis of the �rst corollary is known to hold.

Corollary 5.1. If there exists a separable II1 factor M such that G(M) > 0,
then there exist separable II1 factors which are not singly generated.

Proof. If the separable II1 factor M satis�es G(M) = ∞, then this is already
an example with no �nite set of generators. Thus the additional assumption
that 0 < G(M) < ∞ can be made, in which case

lim
t→0+

G(Mt) = lim
t→0+

t−2G(M) = ∞,

by Theorem 4.5. It is immediate from the de�nition of G(·) that any singly
generated factor has G(·) ≤ 1, and so Mt is not singly generated for su�-
ciently small values of t.

Corollary 5.2. Any �nitely generated II1 factor M with non�trivial funda-
mental group F(M) has G(M) = 0 and is singly generated.

Proof. If t ∈ F(M) \ {1}, then G(M) = G(Mt) = t−2G(M) by Theorem 4.5
as M ∼= Mt. Since G(M) < ∞, it follows that G(M) = 0 so M is singly
generated by Theorem 3.1 or [18].

The following lemma leads to the upper bound for G(M) in Remark 3.2,
and which will �nally be established in Corollary 5.7. A simple modi�cation
yields the odd integer case of Corollary 5.7 without the need for further work.

Lemma 5.3. Let M be a II1 factor which is generated by n hermitian ele-
ments for some n ∈ N. Then Gsa(M) ≤ n− 1.

Proof. Let X = {x1, . . . , xn} be n hermitian elements generating N . Let
ε > 0 and let A be a masa containing xn. Since A ∼= L∞[0, 1], there exists
some diagonalisable P ∈ Peq(A) with |P | > ε−1. Then I(xn; P ) ≤ ε from
item 3 of Remarks 2.4. For each i ∈ {1, . . . , n−1}, the estimate I(xi; P ) ≤ 1
gives

Gsa(M) ≤ I(X; P ) ≤ n− 1 + ε

and the result follows.
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The next lemma is the easy direction of Theorem 5.5.

Lemma 5.4. Let M be a II1 factor. Then

2G(M) ≤ Gsa(M).

Proof. Suppose that M is �nitely generated, as otherwise the inequality is
vacuous. Let ε > 0. Use Lemma 2.6 to �nd a self�adjoint set of generators
X = {x1, . . . , xn} for M and a diagonalisable set of projections P ∈ Peq with
I(X; P ) ≤ Gsa(M) + ε. Take k = |P |m > n/ε for some m ∈ N and choose a
diagonalisable re�nement Q = {e1, . . . , ek} ∈ Peq of P . For l ∈ {1, . . . , n} let

yl =
∑

1≤i<j≤k

eixlej, and zl =
k∑

i=1

eixlei.

Then let Y = {y1, . . . , yn} and Z = {z1, . . . , zn}.
Since xl = zl + yl + y∗l for each l, the �nite set Y ∪ Z generates M .

Moreover,

2I(Y ; Q) + I(Z; Q) = I(Y ; Q) + I(Y ∗; Q) + I(Z; Q) = I(X; Q)

since the regions in {1, . . . , k} × {1, . . . , k} depending on Y , Y ∗ and Z are
disjoint. This gives the estimate

I(Y ; Q) ≤ I(Y ; Q) +
1

2
I(Z; Q) ≤ 1

2
I(X; Q).

As zl ∈ Q′ for all l, item 3 of Remarks 2.4 gives I(Z; Q) ≤ n/k < ε.
Hence

G(M) ≤ I(Y ; Q) + I(Z; Q) ≤ 1

2
I(X; Q) + ε ≤ 1

2
Gsa(M) +

3

2
ε

as Q � P . The lemma follows.

The generator invariant can now be related to the hermtian generator
invariant.

Theorem 5.5. Let M be a II1 factor. Then

G(M) =
1

2
Gsa(M).
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Proof. By Lemma 5.4, it su�ces to prove that Gsa(M) ≤ 2G(M) for a �nitely
generated II1 factor M . Let ε > 0 and choose k, n ∈ N with k > 1 such that

G(M) <
n

2k2
≤ G(M) + ε.

Write t = 1/k so that 0 < t < 1. The scaling formula (Theorem 4.5) gives

G(Mt) = t−2G(M) <
n

2
.

By the generation theorem (Theorem 3.1), Mt is generated by n+1 hermitian
elements so that Gsa(M) ≤ n by Lemma 5.3. Lemma 4.3 on scaling by small
t implies that

Gsa(M) ≤ t2Gsa(Mt) ≤ t2n =
n

k2
< 2G(M) + 2ε.

This proves the theorem.

The scaling for the generator invariant can now be extended to the her-
mitian case, as stated in Remark 4.2.

Corollary 5.6. If M is a separable II1 factor and t > 0, then

Gsa(Mt) = t−2Gsa(M).

Proof. This follows directly from Theorems 4.5 and 5.5.

The next corollary gives the partial converse to the generation theorem
which was indicated in Remark 3.2.

Corollary 5.7. If n is the minimal number of hermitian generators of a
�nitely generated II1 factor M , then

n− 1 ≤ 2G(M) + 1 ≤ n.

Proof. Lemma 5.3 and Theorem 5.5 give G(M) ≤ (n − 1)/2 which yields
the second inequality. If 2G(M) + 1 < n − 1, then G(M) < n−2

2
so that the

generation theorem (Theorem 3.1) gives n − 1 hermitian generators for M ,
contradicting the minimality of n. This gives the �rst inequality.

Corollary 5.8. If G is a countable discrete I.C.C. group generated by n
elements, then G(LG) ≤ (n− 1)/2.
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Proof. If G is generated by g1, . . . , gn, then there are hermitian elements hi

in the II1 factor LG with W ∗(hi) = W ∗(gi) for all i by the spectral theorem,
since each gi is normal. The previous corollary completes the proof.

The following result can be found in [8]. It dates back to Douglas and
Percy [1] and a proof can also be found in [19, Chapter 15].

If a von Neumann algebra N is generated by k self�adjoint ele-
ments, then Mk(C)⊗N is generated by two self�adjoint elements,
equivalent to being singly generated.

In the case of II1 factors, this can be strengthened.

Corollary 5.9. If M is a II1 factor generated by k2 self�adjoint elements,
then M⊗Mk(C) is generated by two self�adjoint elements, equivalent to being
singly generated.

Proof. By Corollary 5.7

G(M) ≤ k2 − 1

2
.

The scaling formula (Theorem 4.5) gives

G(M ⊗Mk(C)) =
1

k2
G(M) ≤ k2 − 1

2k2
< 1/2.

The result follows from the generation theorem (Theorem 3.1) or [18].

Corollary 5.11 gives a formula describing the generator invariant in terms
of the minimal number of generators required to generate compressions of
the von Neumann algebra, based on the following:

De�nition 5.10. Let M be a II1 factor. Write Gmin(M) for the minimal
number of generators of M if M is �nitely generated and let Gmin(M) = ∞
if M is not �nitely generated. The quantity Gmin

sa (M) has a similar de�nition
in terms of the number of self-adjoint generators.

The following simple estimates will be used below.

1. G(M) ≤ Gmin(M) and Gsa(M) ≤ Gmin
sa (M).

2. Gmin
sa (M) ≤ 2Gmin(M) ≤ Gmin

sa (M) + 1.
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Corollary 5.11. Let M be a separable II1 factor. Then

G(M) = lim
k→∞

Gmin(M1/k)

k2
(5.1)

and

Gsa(M) = lim
k→∞

Gmin
sa (M1/k)

k2
. (5.2)

Proof. By Lemma 4.4, assume that M is �nitely generated. The �rst step
is to establish (5.1). The scaling formula (Theorem 4.5) and the estimate 1
above give

G(M) =
G(M1/k)

k2
≤
Gmin(M1/k)

k2

for all k. For ε > 0 �nd k0 ∈ N with k2
0 > ε−1. For k ≥ k0, �nd n ∈ N with

2k2G(M) < n ≤ 2k2G(M) + 1.

The scaling formula gives

G(M1/k) = k2G(M) < n/2

so the generation theorem (Theorem 3.1) ensures that M1/k is generated by
n + 1 hermitians. Estimate 2 preceding the corollary gives

Gmin(M1/k) ≤
1

2

(
Gmin
sa (M1/k) + 1

)
≤ n

2
+ 1

so that

Gmin(M1/k)

k2
≤ n

2k2
+

1

k2
≤ G(M) +

2

k2
≤ G(M) + 2ε.

This gives equation (5.1). For (5.2), note that the estimate 2 above gives

lim
k→∞

Gmin
sa (M1/k)

k2
= 2 lim

k→∞

Gmin(M1/k)

k2
.

The result follows from (5.1) and Theorem 5.5.

The last result of this section records that the previous corollary is part
of a general phenomenon regarding invariants of II1 factors which scale and
are bounded by the numbers of generators involved. The proof is omitted.
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Corollary 5.12. Suppose that H is an invariant of a II1 factor which satis�es
H(M) = t2H(Mt) for all t > 0. If there exist constants a, b ≥ 0 and α, β ∈ R
with

aGmin(M) + α ≤ H(M) ≤ bGmin(M) + β

for all separable II1 factors M , then

aG(M) ≤ H(M) ≤ bG(M).

6 Finite index subfactors

This brief section examines the generator invariant for �nite index inclusions
of II1 factors. Recall from [10] that if N ⊂ M is a unital inclusion of II1 factors
and eN is the orthogonal projection from L2(M) onto L2(N), then the basic
construction 〈M, eN〉 is the von Neumann subalgebra of B(L2(M)) generated
by M and eN and 〈M, eN〉 = JN ′J , where J is the usual modular conjugation
operator on L2(M) given by extending the map x 7→ x∗. This last equation
holds for any von Neumann subalgebra of a II1 factor M , and implies that
〈M, eN〉 is a factor precisely when the same is true for N . Recall also that
{eN}′∩〈M, eN〉 = N . In this situation, N is said to be a �nite index subfactor
if 〈M, eN〉 is a type II1 factor, and one formulation of the index [M : N ] is
given by [M : N ] = Tr(1), where Tr is the unique trace on 〈M, eN〉 normalised
with Tr(eN) = 1.

Lemma 6.1. Suppose that N ⊂ M is a unital inclusion of II1 factors with
[M : N ] < ∞. Then

G(〈M, eN〉) ≤ G(M).

Note that in this lemma, G(〈M, eN〉) is computed with respect to the trace
λ−1Tr, where λ = [M : N ], since this is the trace on the basic construction
algebra 〈M, eN〉, normalised to take the value 1 at the identity.

Proof. Take ε > 0, a �nite generating set X for M and (by Lemma 2.6) a
collection of projections P ∈ Peq(M) with I(X; P ) < G(M) + ε. Since N is
also a factor, there exists a unitary u ∈ U(N) such that uPu∗ = Q0 ∈ P(N).
Choose a re�nement Q of Q0 in Peq(N) with |Q| = k for some k > ε−1. The
inequality

I(eN ; Q) ≤ k−1 < ε
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is implied by item 3 of Remarks 2.4. Since uXu∗ also generates M , it follows
that

G(〈M, eN〉) ≤ I(uXu∗ ∪ {eN}; Q) ≤ I(X; P ) + ε < G(M) + 2ε,

proving the result.

Lemma 6.2. Let N ⊂ M be a �nite index unital inclusion of II1 factors.
Then

G(N) ≥ G(M).

Proof. Recall from [10, Lemma 3.1.8], that given a �nite index inclusion
N ⊂ M , there exists a subfactor P ⊂ N with [N : P ] = [M : N ] and
〈N, eP 〉 ∼= M . The result follows immediately from the previous lemma.

Note that if there is a II1 factor M with G(M) > 0, then the previous
lemma does not hold for in�nite index subfactors as there is always a copy
of the hyper�nite II1 factor R inside any II1 factor.

Theorem 6.3. Let N ⊂ M be a �nite index unital inclusion of II1 factors.
Then G(M) = 0 if, and only if, G(N) = 0.

Proof. Suppose that G(M) = 0. By Lemma 6.1, it follows that G(〈M, eN〉) =
0. Now N ∼= eN 〈M, eN〉 eN , so N ∼= 〈M, eN〉λ−1 , where λ = [M : N ]. The
scaling formula (Theorem 4.5) immediately gives G(N) = 0. The reverse
direction is Lemma 6.2 above.

More generally, suppose that N ⊂ M is a �nite index unital inclusion of
II1 factors and write λ = [M : N ]. The isomorphism N ∼= eN 〈M, eN〉 eN and
the scaling formula lead to the equality

G(N) = λ2G(〈M, eN〉).

Furthermore, Lemmas 6.1 and 6.2 give

G(N) ≥ G(M) ≥ G(〈M, eN〉) = λ−2G(N).

It is then natural to pose the following question.

Question 6.4. Suppose that N ⊂ M is a �nite index unital inclusion of
II1 factors and write λ = [M : N ]. Is it the case that

G(N) = λG(M)?

22



7 Free group factors and free products

The main result in this section is Theorem 7.1 below, which is obtained by
using the quadratic scaling of the generator invariant and a similar property
of the interpolated free group factors LFs of the �rst author and R dulescu [4,
17]. For r > 1 and λ > 0, the quadratic scaling formula for the interpolated
free group factors states that

(LFr)λ = LF1+ r−1

λ2
, (7.1)

from [4, Theorem 2.4].

Theorem 7.1. There exists a constant 0 ≤ α ≤ 1/2 such that

G(LF1+r) = rα. (7.2)

for all r ∈ (0,∞].

Proof. For r ∈ (0,∞) write β(r) = G(LFr+1). Equation (7.1) above and
Theorem 4.5 combine to give

β

(
r − 1

λ2

)
= G((LFr)λ) = λ−2G(LFr) = λ−2β(r − 1). (7.3)

Take r − 1 = t and λ−2 = s in (7.3) to obtain

β(st) = sβ(t)

for all s, t ∈ (0,∞). Hence, there is a constant α = β(1) ≥ 0 with β(t) = αt.
The estimate α ≤ 1

2
follows from Corollary 5.8 as α = G(LF2) and F2 is

certainly generated by two elements.
It remains to extend (7.2) to the r = ∞ case. Since the fundamental

group of LF∞ is R+, [16], or more easily since N ⊂ F(LF∞), [24, Corollary
5.2.3], it follows that G(LF∞) is either 0 or ∞, by Corollary 5.2. Suppose
that α = 0 so that G(LFk) = 0 for each k ≥ 2. Consideration of the chain

LF2 ⊂ LF3 ⊂ LF4 ⊂ · · · ⊂ LF∞
gives G(LF∞) = 0 by Shen's main technical theorem, [18, Theorem 5.1].
Conversely, if G(LF∞) = 0, then the relation α = G(LF2) = 0 follows from
the isomorphism

F2
∼= F∞ o Z.

This is essentially in [18] and a proof can also be found in [19, Chapter 15].
Hence G(LF∞) = 0 if and only if α = 0 and the result follows.
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As an immediate consequence, there is a direct link between the free
group isomorphism problem and the generator invariant.

Corollary 7.2. If G(LF2) > 0, then all the interpolated free group factors
LFr are pairwise non-isomorphic for r > 1.

Remark 7.3. Since LF1
∼= L∞[0, 1] has generator invariant 0, the previous

theorem extends to include the case r = 0.

The next results give some estimates regarding the generator invariant
and free products. Reverse inequalities to either Theorem 7.5 or Theorem 7.6
would immediately combine with Corollary 7.2 to show the non�isomorphism
of the free group factors. Lemma 7.4 originates in a conjugacy idea used
repeatedly by Shen to obtain [18, Theorem 5.1].

Lemma 7.4. Let M and N be II1 factors containing a common di�use von
Neumann subalgebra B. Then

G(M ∗B N) ≤ G(M) + G(N).

Proof. Given ε > 0, choose �nite subsets X ⊂ M and Y ⊂ N and families
P ∈ P(M) and Q ∈ P(N) with W ∗(X) = M , W ∗(Y ) = N and

I(X; P ) < G(M) +
ε

2
, I(Y ; Q) < G(N) +

ε

2
. (7.4)

By re�ning if necessary, it may be assumed that P and Q are equivalent since
Proposition 2.5 ensures that the estimate (7.4) is una�ected by re�nement.
Since B is di�use, choose E ∈ PB equivalent to P and Q and unitaries u ∈ M
and v ∈ N with uPu∗ = E and vQv∗ = E. Then uXu∗ ∪ vY v∗ is a �nite
generating set for M ∗B N and

I(uXu∗ ∪ vY v∗; E) = I(X; P ) + I(Y ; Q) < G(M) + G(N) + ε,

from which the result follows.

Theorem 7.5. Let M and N be II1 factors. Then

G(M ∗N) ≤ G(M) + G(N) +
1

2
.
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Proof. Choose masas A ⊂ M and B ⊂ N . Then M ∼= M ∗A A and N ∼=
N ∗B B, and so

M ∗N ∼= (M ∗A A) ∗ (B ∗B N) ∼= (M ∗A LF2) ∗B N,

where LF2 = A ∗B. Now use Lemma 7.4 twice to obtain

G(M ∗N) ≤ G(M ∗A LF2) + G(N) ≤ G(M) + G(N) + G(LF2).

The result follows as Theorem 7.1 gives G(LF2) ≤ 1/2.

The remainder of this section examines free products with �nite hyper-
�nite von Neumann algebras. In [12], Jung proves that for a �xed hyper-
�nite von Neumann algebra Q with a �xed faithful normal tracial state φ,
Voiculescu's modi�ed free entropy dimension δ0(X) is the same for all �nite
sets X that generate Q. Write δ0(Q) for this quantity. The de�nition of
the modi�ed free entropy dimension will be given in the next section, which
discusses free entropy dimension in conjunction with the generator invari-
ant. Here only the value of δ0(Q) is needed. Following [12], given (Q, φ),
decompose Q over its centre to obtain

Q ∼= Q0 ⊕

(
s⊕

i=1

Mki
(C)

)
,

where Q0 is di�use or {0}, the sum on the right is either empty, �nite or
countably in�nite and each ki ∈ N. The trace φ is given by

φ = α0φ0 ⊕

(
s⊕

i=1

αitrki

)
,

where

• α0 > 0 and φ0 is a faithful normal trace on Q0, if Q0 6= {0};

• α0 = 0 and φ0 = 0 if Q0 = {0};

• trki
is the tracial state on the ki× ki matrices Mki

(C) and each αi > 0.

Then, from [12],

δ0(Q) = 1−
s∑

i=1

α2
i

k2
i

. (7.5)

25



Furthermore, as also noted in [12], this quantity agrees with the `free dimen-
sion number' for Q de�ned in earlier work of the �rst author [3]. In this work
it was shown (Theorem 4.6 of [3]) that if A = L∞[0, 1] is equipped with the

usual trace
∫ 1

0
· dt, then A ∗Q ∼= LFr, where r = δ0(Q) + 1.

Theorem 7.6. Let M be a II1 factor and Q a hyper�nite von Neumann
algebra with a �xed faithful normalised trace φ. Then

G(M ∗Q) ≤ G(M) +
1

2
δ0(Q).

Proof. Choose a masa A ⊂ M so that A is isomorphic to L∞[0, 1] with the

trace on A (coming from τM) being given by
∫ 1

0
· dt. The discussion preceding

the theorem gives

M ∗Q ∼= M ∗A ∗(A ∗Q) ∼= M ∗A LFr

where r = 1+δ0(Q) and A is a masa in LFr. By Proposition 7.4 and Theorem
7.1,

G(M ∗Q) ≤ G(M) + G(LFr) ≤ G(M) +
r − 1

2
= G(M) +

1

2
δ0(Q),

exactly as required.

The next two corollaries are obtained by taking Q to be successively the
n × n matrices with the usual normalised trace and to be LZn, with the
group trace. The results follow from calculating δ0(Mn(C)) = 1 − 1

n2 and
δ0(LZn) = 1− 1

n
from Jung's formula (7.5).

Corollary 7.7. Let M be a II1 factor and n ≥ 2. Then

G(M ∗Mn(C)) ≤ G(M) +
1

2
− 1

2n2
.

Corollary 7.8. Let M be a II1 factor and n ≥ 2. Then

G(M ∗ LZn) ≤ G(M) +
1

2
− 1

2n
.

26



8 Free entropy dimension

The objective in this section is to relate the generator invariant to Voiculescu's
modi�ed free entropy dimension by proving the inequalities

δ0(X) ≤ 1 + 2I(X) (8.1)

when X is a �nite generating set in a �nite von Neumann algebra M and,
under the extra assumption that X consists of self�adjoint elements,

δ0(X) ≤ 1 + I(X). (8.2)

For certain sets X of operators, these inequalities give lower bounds on I(X).
These seem to be the only such lower bounds that are currently known.
Consider the case of a DT -operator Z, introduced by the �rst author and
Haagerup in [5]. By [2] each such Z, including the quasi�nilpotent DT�
operator T , generates LF2. The operator Z is constructed by realising LF2

as generated by a semicircular element S together with a free copy of L∞[0, 1],
using projections from L∞[0, 1] to cut out an �upper triangular� part of S,
which is the quasi�nilpotent DT�operator T , and then adding an operator
from L∞[0, 1] to get Z. Using projections from L∞[0, 1], one easily sees that
I(Z) ≤ 1/2. On the other hand, since, by [6], δ0(Z) = 2, (8.1) gives

I(Z) = 1/2.

Similarly, free semi�circular elements h1, h2 generating LF2 satisfy δ0(h1, h2) =
2 from [22], so that (8.2) gives I(h1, h2) ≥ 1. The reverse inequality follows
by taking a su�ciently �ne family of projections in either W ∗(h1) or W ∗(h2)
� see the proof of Lemma 5.3 � so that

I(h1, h2) = 1.

Below, an important ingredient is Jung's covering�number formulation of
the modi�ed free entropy dimension from [11, 13]. Before embarking on the
proof of the inequalities (8.1) and (8.2), the prevailing notation in this area is
outlined. Let M be a II1 factor and continue to write τ for the faithful normal
trace on M normalised by τ(1) = 1. For k ∈ N write Mk(C) for the k × k
matrices, equipped with the trace trk normalised with trk(1) = 1. For a �nite
subset X = {x1, . . . , xn} ⊂ M , γ > 0 and k,m ∈ N de�ne the microstate
space Γ(X; m, k, γ) to be the set of all n-tuples (a1, . . . , an) of k×k-matrices
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whose ∗-moments approximate those of (x1, . . . , xn) up to order m within a
tolerance of γ. This means that∣∣∣τ(xj1

i1
. . . x

jp

ip
)− trk(a

j1
i1

. . . a
jp

ip
)
∣∣∣ < γ

for all p ≤ m and i1, . . . , ip ∈ {1, . . . , n} and j1, . . . , jm ∈ {1, ∗}. When all
the xj's are self�adjoint, it makes no di�erence to the de�nition of δ0(X)
whether all the ai's are required to be self�adjoint � see for example the
beginning of Section 3 of [6].

The space (Mk(C))n carries a metric arising from the Euclidean norm
given by

‖(a1, . . . , an)‖2
2 =

(
n∑

l=1

trk(a
∗
l al)

)1/2

. (8.3)

Given ε > 0, the covering number Kε (Y ) of a metric space Y is the minimal
cardinality of an ε-net for Y . One easy estimate, used in the sequel, is

Kε (Y ) ≤ Pε/2 (Y ) , (8.4)

where Pε/2 (Y ) is the maximal number of disjoint open ε/2-balls which can
be found in Y . In [13], Jung de�nes, for m ∈ N and γ, ε > 0,

Kε,∞(X; m, γ) = lim sup
k→∞

k−2 log Kε (Γ(X; m, k, γ)) . (8.5)

where the metric on Γ(X; m, k, γ) is that obtained from the norm in (8.3).
Then

Kε,∞(X) = inf
m∈N,γ>0

Kε,∞(X; m, γ). (8.6)

Jung shows in Lemma 2.2 of [13], that the modi�ed free entropy dimension
δ0(X) is given by

δ0(X) = lim sup
ε→0

Kε,∞(X)

log |ε|
. (8.7)

In [14], Jung made a detailed analysis of the rate of convergence in the
limit-superior in (8.7) and, for α > 0, de�ned the generating set X of M to
be α-bounded if there exists some constant K and ε0 > 0 such that

Kε,∞(X) ≤ α| log ε|+ K
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for all 0 < ε < ε0. It is immediate that if X is α-bounded, then δ0(X) ≤ α.
Furthermore, Jung de�ned M to be strongly�1�bounded if it has a generating
set X that is 1-bounded and if there exists a self-adjoint element x belonging
to X (or, equivalently, to the algebra generated by X) that has �nite free
entropy. Theorem 3.2 of [14] shows that if M is strongly�1�bounded, then
every �nite set of generators for M is 1�bounded. The inequalities (8.1)
and (8.2) are established by showing that X is (1 + 2I(X))�bounded, and is
(1 + I(X))�bounded if X consists only of self�adjoint elements.

The following lemma, due to Voiculescu, will be needed subsequently.
Formally, a proof can be constructed by copying the ideas of the proof of
Proposition 1.6 of [23].

Lemma 8.1. Suppose that X = {x1, . . . , xn} is a �nite subset of M with
W ∗(X) = M . Fix p ∈ N and pairwise orthogonal projections e1, e2, . . . , ep in
M with sum 1 and τ(ei) = p−1 for each i. Given γ > 0 and m ∈ N, there
exists γ′ > 0, m′, k′ ∈ N such that if

(a1, . . . , an) ∈ Γ(X; m′, k, γ′)

for some k ≥ k′ with p|k, then there exist pairwise orthogonal projections
(f1, . . . , fp) in Mk(C) each with τk(fi) = p−1 (so that

∑n
i=1 fi = 1) satisfying

(a1, . . . , an, f1, . . . , fp) ∈ Γ(x1, . . . , xn, e1, . . . , ep; m, k, γ).

Now the main result of this section:

Proposition 8.2. Let M be a �nite von Neumann algebra and X ⊂ M a
�nite generating set for M . Then X is (1 + 2I(X))�bounded. If X consists
of only self�adjoint elements of M , then X is (1 + I(X))�bounded.

Proof. Let X = (x1, . . . , xn) be an n-tuple which generates M . Fix ε > 0 and
suppose that c > I(X). Use Lemma 2.6 to �nd E = {e1, . . . , ep} ∈ Peq(M)

with I(X; E) < c and each τ(ei) = p−1. Write S =
(∑n

i=1 ‖xi‖2
2

)1/2
. Take

γ > 0 and m ∈ N with m ≥ 6. Let k′, m′ and γ′ be the constants obtained
by applying Lemma 8.1 to X and (e1, . . . , ep). Let k ≥ k′ be divisible by p
and �x a family of pairwise orthogonal projections (q1, . . . , qp) in Mk(C) with
each τk(qi) = p−1.

For each l = 1, . . . , n write Tl for the set of pairs (i, j) with eixlej 6= 0.
As I(I; E) < c, it follows that

n∑
l=1

|Tl| < cp2. (8.8)
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Following the approach of [7], de�ne the projection Q from (Mk(C))n into
(Mk(C))n by

Q(a1, . . . , an) =

 ∑
(i,j)∈Tl

qialqj

n

l=1

.

When each xl = x∗l , the sets Tl are invariant under the adjoint opera-
tion so in this case Q restricts to give a projection from (Msa

k (C))n into
(Msa

k (C))n. The range Q((Mk(C))n) is a 2
∑n

l=1 |Tl|(k/p)2�dimensional sub-

space of (Mk(C))n ∼= R2nk2
. Under the additional assumption that xl = x∗l

for each l, the range Q((Msa
k (C))n) is a

∑n
l=1 |Tl|(k/p)2�dimensional subspace

of (Msa
k (C))n ∼= Rnk2

.
Let Y be the subset (Q(Mk(C)n))2S consisting of all elements (b1, . . . , bn) ∈

Q(Mk(C)n) with ‖(b1, . . . , bn)‖2 ≤ 2S if X does not consist of self-adjoint
elements and let Y = (Q((Msa

k (C))n))2S when each xl = x∗l . Volume consid-
erations give

Pε/2 (Y ) ≤
(

2S

ε/2

)2
Pn

l=1 |Tl|(k/p)2

,

in the �rst case and

Pε/2 (Y ) ≤
(

2S

ε/2

)Pn
l=1 |Tl|(k/p)2

,

in the second. The simple estimate (8.4) combines with (8.8) to give

Kε (Y ) ≤

{(
4S
ε

)ck2

, xl = x∗l for all l(
4S
ε

)2ck2

, otherwise.

Fix an ε-net (b(α))α∈A for Y , with b(α) = (b
(α)
1 , . . . , b

(α)
n ) and with |A| ≤

(4S/ε)2ck2
in the general case or |A| ≤ (4S/ε)ck2

in the self�adjoint case.
Szarek has shown in [20] that there is a universal constant C > 0 such

that there are ε-nets in the groups Uk of unitaries in Mk(C) equipped with
the operator norm, of cardinality at most (C/ε)k2

. Fix an ε/4S-net (uβ)β∈B
for Uk with |B| ≤ (4CS/ε)k2

. Given a unitary u ∈ Uk and b = (b1, . . . , bn) ∈
Mk(C)n, write ubu∗ for the n-tuple (ub1u

∗, . . . , ubnu
∗).

The next step is to establish that any point a = (a1, . . . , an) ∈ ΓR(X; m′, k, γ′)
(for k ≥ k′ and k divisible by p) satis�es∥∥a− uβb(α)u∗β

∥∥
2

< 4ε (8.9)

30



for some α ∈ A and β ∈ B. Given such an a, let the orthogonal projections
(f1, . . . , fp) in Mk(C) with each τk(fi) = p−1 be those from Lemma 8.1. Now
each xl can be written xl =

∑
(i,j)∈Tl

eixlej. Since

(a1, . . . , an, f1, . . . , fp) ∈ ΓR(x1, . . . , xn, e1, . . . , ep; m, k, γ),

it follows that ∥∥∥∥∥∥al −
∑

(i,j)∈Tl

fialfj

∥∥∥∥∥∥
2

2

< γ,

from the standing assumption that m ≥ 6. Now �nd a unitary u ∈ Uk

with ufiu
∗ = qi for each i = 1, . . . , p. Then u∗Q(uau∗)u is the n-tuple with∑

(i,j)∈Tl
fialfj in the l-th entry so that

‖a− u∗Q(uau∗)u‖2
2 ≤ nγ. (8.10)

Note that ‖a‖2
2 ≤

∑n
l=1(‖xi‖2 + γ)2 ≤ 4S2 provided γ is small enough.

Therefore Q(uau∗) ∈ Y and there exists α ∈ A with∥∥Q(uau∗)− b(α)
∥∥

2
< ε.

Now �nd some β ∈ B with

‖uβ − u‖ < ε/4S. (8.11)

For any z ∈ Mk(C)n with ‖z‖2 ≤ 2S, this gives∥∥uzu∗ − uβzu∗β
∥∥

2
≤ 2 ‖u− uβ‖ ‖z‖2 < ε. (8.12)

Now compute∥∥a− uβb(α)u∗β
∥∥

2

≤
∥∥u∗Q(uau∗)u− uβb(α)u∗β

∥∥
2
+ ‖a− u∗Q(uau∗)u‖2

≤
∥∥u∗Q(uau∗)u− uβb(α)u∗β

∥∥
2
+
√

nγ

≤
∥∥u∗Q(uβau∗β)u− uβb(α)u∗β

∥∥
2
+
∥∥u∗(Q(uau∗ − uβau∗β)u

∥∥
2
+
√

nγ

≤
∥∥u∗βQ(uβau∗β)uβ − uβb(α)u∗β

∥∥
2
+
∥∥u∗Q(uβau∗β)u− u∗βQ(uβau∗β)uβ

∥∥
2
+ ε +

√
nγ

=
∥∥Q(uβau∗β)− b(α)

∥∥
2
+ 2ε +

√
nγ,
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using the estimates (8.10), (8.11) and (8.12). Then (8.9) follows by tak-
ing γ to be so small that

√
γn < ε. Hence the cardinality of a 4ε-net for

ΓR(X; m′, k, γ′) is at most |A||B|.
When each xl is self-adjoint, |A| ≤ (4S/ε)ck2

and |B| ≤ (4CS/ε)k2
so

k−2 log Kε (Γ(X; m′, γ′)) ≤ c log

(
16S

ε

)
+ log

(
16CS

ε

)
.

for all k ≥ k′ with p|K. Perform the limiting operations of (8.5) and (8.6) to
get

Kε,∞(X) ≤ c log

(
16S

ε

)
+ log

(
16CS

ε

)
.

Since c > I(X) is arbitrary, this immediately gives

Kε,∞(X) ≤ I(X) log

(
16S

ε

)
+ log

(
16CS

ε

)
(8.13)

as the other constants involved, S and C are independent of c; namely S =(∑n
i=1 ‖xi‖2

2

)1/2
and C is the universal constant in Szarek's work [20].

In the case that the elements of X are not all self-adjoint, the only dif-
ference is the estimate |A| ≤ (4S/ε)2ck2

. The procedure above yields

Kε,∞(X) ≤ 2I(X) log

(
16S

ε

)
+ log

(
16CS

ε

)
(8.14)

in this instance. The inequalities (8.13) and (8.14) are exactly those required
for the lemma.

Corollary 8.3. Let X be a �nite set of generators for the II1 factor (M, τ).
Then

δ0(X) ≤ 1 + 2I(X).

Corollary 8.4. Let X be a �nite set of self-adjoint generators for the II1 factor
(M, τ). Then

δ0(X) ≤ 1 + I(X).

Remark 8.5. No �nite set X of generators for the free group factor LF2

such that the ∗�algebra generated by X contains a self�adjoint element of
�nite free entropy can have I(X) = 0, as this would imply that LF2 would
be strongly-1-bounded, which is not the case. Note also, however, that it is
possible that G(LF2) = 0 without having I(X) = 0 for any �nite generating
set X, in that an in�mum of 0 need not be attained by any X.
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