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In memory of Joel Zinn (March 16, 1946 – December 5, 2018), beloved friend and brilliant colleague.

Abstract. We study the complexity of approximating complex zero sets of certain n-
variate exponential sums. We show that the real part, R, of such a zero set can be
approximated by the (n− 1)-dimensional skeleton, T , of a polyhedral subdivision of Rn. In
particular, we give an explicit upper bound on the Hausdorff distance: ∆(R, T )=O

(

t3.5/δ
)

,
where t and δ are respectively the number of terms and the minimal spacing of the frequen-
cies of g. On the side of computational complexity, we show that even the n=2 case of the
membership problem for R is undecidable in the Blum-Shub-Smale model over R, whereas
membership and distance queries for our polyhedral approximation T can be decided in
polynomial-time for any fixed n.

1. Introduction

We study zero sets of exponential sums of the form g(z) :=
∑t

j=1 e
aj ·z+βj where z ∈Cn,

aj ∈ Rn, the aj are pair-wise distinct, βj ∈ C, and aj · z denotes the usual Euclidean inner
product in Cn. We call g an n-variate exponential t-sum, aj a frequency of g, {a1, . . . , at}
the spectrum of g, and δ(g) :=minp 6=q |ap − aq| the minimal spacing of the frequencies of g.
(Throughout this paper, we use | · | for the standard ℓ2-norm on CN for any N ∈N.) We also
call the βj the coefficients of g. One can think of g as an analogue of a polynomial with real
exponents, and hope to use algebraic intuition to derive new metric results in the broader
setting of exponential sums. We shall do so by combining results on random projections
with some new extensions of classical univariate polynomial bounds.
Exponential sums appear across pure and applied mathematics. For instance, exponential

sums (in the form above) occur in the calculation of 3-manifold invariants (see, e.g., [McM00,
Appendix A] and [Had16]), and have been studied from the point of view of Diophantine
Geometry, Model Theory, and Computational Algebra, (see, e.g., [Ric83, MW96, Wil96,
Zil02, AMW08, KZ14, SY14, HP16]). Also, the non-lattice Dirichlet polynomials appearing
in the study of fractal strings [LV06] are a special case of the exponential sums we consider
here. An application to radar antennae [FH95, HAGY08] — finding the directions of a set
of unknown signals — reduces to finding the zeroes of a univariate exponential sum, with
frequencies depending on the location of the sensors of the antenna. Approximating roots
of multivariate exponential sums is also a fundamental computational problem in Geometric
Programming [DPZ67, Chi05, BKVH07].
For any analytic function g on Cn let Z(g) denote the set of complex zeroes of g. Also,

for any W ⊆Cn, we define its real part to be Re(W ) :={(Re(z1), . . . ,Re(zn)) | (z1, . . . , zn)∈W}.
One can wonder if exact computation with the roots of exponential sums is possible using
only field operations and comparisons over R, or if approximation is truly necessary. Exact
computation turns out to be intractable, relative to a standard computational model (the
BSS model over R [BCSS98]), already in the special case of two variables and three terms.
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2 ALPEREN A. ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

Theorem 1.1. Determining, for arbitrary input r1, r2 ∈ R, whether (r1, r2) lies in
Re(Z(1− ez1 − ez2)) is undecidable1 in the BSS model over R.

We prove Theorem 1.1 in Section 3.1. There are certainly tractable special cases of the
preceding problem, such as when the ri = log si for some positive rational si (see, e.g.,
[The02, TdW15] and [AKNR18, Thm. 1.9]). Similarly, the famous Lindemann-Weierstrass
Theorem tells us that er1 + er2 is transcendental when r1, r2∈R are distinct and algebraic.

However, checking whether er1 +er2
?∈Q(r1, r2) for arbitrary distinct transcendental r1, r2∈R

— using only finitelymany rational operations and inequality checks in Q(r1, r2) — is already
an open question. Theorem 1.1 thus highlights the need for approximation if one wants to
work with roots of exponential sums in complete generality.
A natural question then is whether one can efficiently approximate the zero set of an

exponential sum. For instance, can we at least decide — perhaps within polynomial-time —
whether a given point is close to the real part of the zero set of an exponential sum? Our
main algorithmic and quantitative results (Theorems 1.9 and 1.10) show that this is indeed
the case, at least in a coarse sense: We derive a polyhedral structure that can be considered
as a first-order approximation to the real part of the zero set, so that higher-order numerical
iterative methods can be deployed when higher precision is needed in a specific application.
Clearly, Z(g) is empty when t=1. That polyhedra arise from the real parts of zero sets of

exponential sums is most easily seen in the special case of t=2 terms: Since
∣

∣±eβ
∣

∣=eRe(β),

the equality ea1·z+β1+ea2·z+β2 =0 implies ea1·Re(z)+Re(β1)=ea2·Re(z)+Re(β2), and we thus obtain
the following basic fact after taking logarithms:

Proposition 1.2. If g(z) = ea1·z+β1 + ea2·z+β2 for some distinct a1, a2 ∈Rn, and β1, β2 ∈C,
then Re(Z(g)) is the affine hyperplane {u∈Rn | (a1 − a2) · u+Re(β1 − β2)=0}. �
Before stating our main metric results in arbitrary dimension, it will be useful to observe

some of the intricacies present already in the univariate case.

1.1. Clustering of Real Parts in One Variable. The simple sum ez1 − 1 shows that the
imaginary part Im(Z(g)) can be infinite already in the univariate case, unlike the polynomial
setting. A more subtle phenomenon, however, is that Re(Z(g)) need not even be closed.

Proposition 1.3. X := Re
(

Z
(

e
√
2z1 + e

√
3z1 + e

√
5z1

))

is countably infinite, contained in

the open interval
(

− log 2√
3−

√
2
, log 2√

3−
√
2

)

(⊂ (−2.181, 2.181)), and dense in the open interval

(−1.06, 1.06). In particular, X does not contain all its limit points.

We prove Proposition 1.3 in Section 2. Another subtlety behind Re(Z(g)) is that finding its
points in the special case where n=1 and the spectrum of g lies in Z is the same as finding
the logarithms of the absolute values of the complex roots of a polynomial. In particular,

just deciding 0
?∈ Re(Z(g)) in this special case is already NP-hard [Pla84].

A natural trick we will soon justify is that we can predict real parts by examining pairs
of terms of g with large absolute value, in order to locally reduce to the two-term case:

Definition 1.4. Let us define, for any n-variate exponential t-sum g, with t ≥ 2, its
tropical variety as

Trop(g) :=Re
({

z∈Cn : maxj
∣

∣eaj ·z+βj
∣

∣ is attained at at least two distinct j
})

. ⋄
1[Poo14] provides an excellent survey on undecidability, in the classical Turing model, geared toward

non-experts in complexity theory.
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The calculation preceding Proposition 1.2 in fact yields Trop(g)=Re(Z(g)) when t=2.
More generally, among many other equivalent character-

izations, Trop(g) can also be defined as the set of points at
which the piece-wise linear function Ng : Rn −→ R defined
by Ng(u) :=maxj {aj · u+Re(βj)} is non-differentiable. So,
for n = 1, the graph of Ng is concave upward, with at
most t − 1 “corners,” and thus Trop(g) consists of at most
t − 1 points. For instance, g(z1) := (ez1 + 1)2 implies that
Ng(u)=max{0, u+log 2, 2u} (with graph drawn to the right)
and thus Trop(g)={± log 2}.
Computing Trop(g) when n=1 is thus no harder than computing a convex hull in R2, and

Re(Z(g)) turns out to always accumulate predictably near Trop(g). In what follows, we use
#S for the cardinality of a set S.

Theorem 1.5. Suppose g is any univariate exponential t-sum with spectrum {a1, . . . , at}⊂
R, minimal frequency spacing δ(g) := minp 6=q |ap − aq|, and t ≥ 3. Let s := #Trop(g),
umin :=minTrop(g), umax :=maxTrop(g), and let Ug be the union of open intervals

(

umin − log 2
δ(g)

, umax +
log 2
δ(g)

)

∩ ⋃

u∈Trop(g)

(

u− log 3
δ(g)

, u+ log 3
δ(g)

)

.

Then 1≤s≤ t− 1 and:
(1) Re(Z(g))⊂Ug.
(2) Re(Z(g)) has at least one point in each connected component of Ug.
(3) For any u∈Trop(g) there is a root ζ∈C of g with

|u−Re(ζ)| < (log 9)s−log 9
2

δ(g)
≤ (log 9)t−log 81

2

δ(g)
< (2.2t− 3.7)/δ(g).

We prove Theorem 1.5 in Section 2.2. The constants log 2 and log 3 in the definition of the
neighborhood Ug above are in fact optimal:

Lemma 1.6. (See, e.g., [AKNR18, Cor. 2.3(c) & Lemma 2.5].) Consider any real δ > 0,
any integer t≥2, and the exponential sums

g1,t(z1) := e(t−1)δz1 − e(t−2)δz1 − · · · − e0 , g2,t(z1) := g1,t(−z1) , and

g3,t(z1) := 1 + eδz1 + · · ·+ e(t−1)δz1 − etδz1 + e(t+1)δz1−1·log 9 + · · ·+ e(t+t)δz1−t log 9.

Then we have:
(1) Trop(g1,t)=Trop(g2,t)={0} but Re(Z(g1,t)) (resp. Re(Z(g2,t))) contains points strictly

increasing (resp. strictly decreasing) toward a limit of log 2
δ

(resp. − log 2
δ
) as t −→ ∞.

(2) Trop(g3,t)=
{

0, log 9
δ

}

and Re(Z(g3,t)) ∩
[

− log 3
δ
, log 3

δ

]

is empty. However, for any ε>0,

there is a t∈N such that Re(Z(g3,t)) ∩
(

log 3
δ

− ε, log 3
δ

+ ε
)

is non-empty. �

We note that [AKNR18, Cor. 2.3(c) & Lemma 2.5], while phrased in terms of univariate
polynomials f(x1), directly yield Assertions (1) and (2) above upon substituting x1=eδz1 .
The clustering of Re(Z(g)) about Trop(g) persists in higher dimension.

1.2. Efficiently Finding Clusters of Real Parts in Arbitrary Dimension. Our defini-
tion of tropical variety generalizes an earlier version defined just for polynomials: When the
spectrum of g lies in Zn, one can associate to our exponential sum g the Laurent polynomial
f(x) :=

∑t
j=1 e

βjxaj ∈C
[

x±1
1 , . . . , x±1

n

]

. Recall that the amoeba of f is the set

Amoeba(f) :={(log |x1|, . . . , log |xn|) | f(x1, . . . , xn)=0; x1, . . . , xn∈C∗}.
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It is then clear that, under these restrictions,Re(Z(g))=Amoeba(f). Tropical geometry (see,
e.g., [Vir01, PR04, EKL06, Pay09, IMS09, BR10, ABF13, MS15, AKNR18]) enables algebraic
varieties over various complete algebraically closed fields (such as C, C〈〈t〉〉, or Cp, to name a
few) to be approached polyhedrally. In our notation here, defining Trop(f) :=Trop(g) results
in the Archimedean tropical variety of f , whose metric aspects were studied in [AKNR18].
This kind of tropical variety over C can be traced back to 1893 work of Hadamard revealing
how to polyhedrally approximate products of norms of complex roots of univariate polyno-
mials [Had93].
Our Trop(·) here is thus a small first step toward extending tropical methods from poly-

nomial functions to certain exponential sums. It should be noted that the theory of A-
discriminants [GKZ94] now also has a generalization to exponential sums [RR18], and these
generalizations have led to sharper bounds in real fewnomial theory [FNR19].
Recall that the affine span of a point set S ⊂ Rn is the smallest affine subspace of Rn

containing S. Via polyhedral duality (see, e.g., [Grü03, Zie95, dLRS10]), an immediate
consequence of our characterization of Trop(g) via the graph of Ng is the following fact:

Proposition 1.7. Let d be the dimension of the affine span of the spectrum of a real n-
variate exponential t-sum g. Then Trop(g) is a polyhedral complex of pure dimension n− 1,
and is connected when d≥2. �

Definition 1.8. For any n-variate exponential t-sum g, let Σ(Trop(g)) denote the polyhedral
complex whose cells are exactly the (possibly improper) faces of the closures of the connected
components of Rn\Trop(g). ⋄
We can now make precise how easy Trop(g) is to work with algorithmically. In the theorem

below, the underlying computational model is the BSS model over R [BCSS98], and the input
size of a point in Rn (resp. an n-variate t-nomial g) is defined to be n (resp. (n + 1)t), i.e.,
we merely measure the input size as the number of real numbers fed into a BSS machine.

Theorem 1.9. Suppose n is fixed. Then there is a polynomial-time algorithm that, for any
input r ∈ Rn and n-variate exponential t-sum g, outputs the closure — described as an
explicit intersection of O(t2) half-spaces — of the unique cell σr of Σ(Trop(g)) containing r.

We prove Theorem 1.9 in Section 3.2.
By applying the standard formula for point-hyperplane distance, and the well-known effi-

cient algorithms for approximating square-roots (see, e.g., [BB88]), Theorem 1.9 implies that
we can also efficiently check membership in any ε-neighborhood about Trop(g). Our com-
plexity bound above, combined with our final main result below, tells us that membership
in a neighborhood of Trop(g) is a tractable and potentially useful relaxation of the problem
of deciding membership in Re(Z(g)).

Theorem 1.10. Let t≥ 3 and let g be any n-variate exponential t-sum with spectrum S :=
{a1, . . . , at}⊂Rn, minimal frequency spacing δ(g) :=minp 6=q |ap − aq|, and d the dimension
of the affine span of S. Then d≤min{n, t− 1} and:

(1) If t=d+ 1 then Trop(g)⊆Re(Z(g)).

(2) If t≥d+ 1 then (a) sup
r ∈ Re(Z(g))

inf
u ∈ Trop(g)

|r − u| ≤ log(t− 1)

δ(g)
and

(b) sup
u ∈ Trop(g)

inf
r ∈ Re(Z(g))

|r − u| ≤
√
edt2

(

(log 9)t− log
81

2

)/

δ(g).
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(3) The bound from Assertion (2a) is optimal in the following sense: If δ > 0 and ϕ(z) is
defined as 1+eδz1+· · ·+eδzt−1 and r :=− log(t−1)(1, . . . , 1)/δ∈Rt−1, then Re(Z(ϕ))∋r
and inf

u ∈ Trop(g)
|r − u|=(log(t− 1))/δ.

Example 1.11. When g is the 2-variate expo-
nential 7-sum

∑6
j=0

(

7
j

)

ecos(2πj/7)z1+sin(2πj/7)z2,

Theorem 1.10 tells us that every point of
Re(Z(g)) lies within distance

log(6)/
√

(1− cos(2π/7))2 + sin(2π/7)2<2.065
of some point of Trop(g). To the right, we
can see Trop(g) as the black piecewise lin-
ear curve drawn on the right, along with the
stated neighborhood of Trop(g) containing Re(Z(g)). −20 −15 −10 −5 0 5 10 15 20
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We prove Theorem 1.10 in Section 4. Prior to our work, there have been many fundamental
results on the geometric and topological structure of the zero loci of exponential sums, e.g.,
[Mor73, Kaz81, Kho91, Fav01, Sil08, Sop08, Sil12, Ale13, MSV13]. However, to the best of
our knowledge, our results are the first to give an efficient approximation to all of Re(Z(g))
with explicit distance bounds.2 Recently, Forsg̊ard has found a bound complementary to
Assertion (2a) of Theorem 1.10 that is tighter when the number of terms is exponential in
the dimension. We rephrase his bound [For16, Thms. 1.2 & 1.3] into our notation below:

Forsg̊ard’s Theorem. Following the notation of Theorem 1.10,

sup
r ∈ Re(Z(g))

inf
u ∈ Trop(g)

|r − u| ≤ 2n
√
n log(2 +

√
3)

δ(g)
.

In particular, if the spectrum of g lies in Zn, then the upper bound can be further improved
to n log(2 +

√
3). �

For instance, for arbitrary real spectra, Forsg̊ard’s bound improves Assertion (2a) of our
Theorem 1.10 when t>1 + e2.634n

√
n.

One can also view the polyhedral structure in Theorem 1.10 as a limit shape of a parametric
family of real parts of complex zero sets. Recall that, given any subsets U, V ⊆ Rn, their

Hausdorff distance is ∆(U, V ) :=max

{

sup
u∈U

inf
v∈V

|u− v|, sup
v∈V

inf
u∈U

|u− v|
}

.

Corollary 1.12. For any exponential sum g(z) :=
∑t

j=1 e
aj ·z+βj we define a parametric

family of exponential sums via gs(z) :=
∑t

j=1 e
aj ·z+s·βj for any s > 0. We then have

∆
(

1
s
Re(Z(gs)),Trop(g)

)

−→ 0 as s −→ ∞.

Proof: First observe that Trop(gs)=sTrop(g) by definition. Applying Theorem 1.10 we then
obtain ∆(Re(Z(gs)),Trop(gs)) ≤

√
ent2(2.2t−3.7)/δ(g). So then, ∆(Re(Z(gs)),Trop(gs)) =

s∆
(

1
s
Re(Z(gs)),Trop(g)

)

and thus ∆
(

1
s
Re(Z(gs)),Trop(g)

)

≤ √
ent2(2.2t−3.7)/(δ(g)s). �

Corollary 1.12 can be thought of as an exponential sum analogue of Maslov dequantization.
The latter is a process by which one can obtain a (non-Archimedean) tropical variety as a
limit of (complex) polynomial amoebae (see, e.g., [Vir01]).

2A preliminary version of Theorem 1.10 appeared in our December 2014 Math ArXiV preprint 1412.4423
and was presented by the first author at MEGA 2015 (June 16, University of Trento).
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Let us now see a key ingredient, possibly of independent interest, behind the proof of our
main multivariate metric bound.

1.3. Careful Projection to Reduce to the Univariate Case. Much of the recent lit-
erature on random projections aims toward creating random matrices whose corresponding
linear maps are “nearly” isometries. The approach is to create a random projection matrix
on a geometric object of interest, and the rank of the matrix is ultimately controlled by the
statistical dimension of the geometric object [Ver17]. For our proof of Theorem 1.10, we’ll
need a projection of rank 1 that distorts distances only slightly. Since most of the random
matrix literature focusses on asymptotic behavior in high dimensions, we’ll use a folkloric
result stated as Lemma 1.13 below.
Let Gn,k be the Grassmanian of k-dimensional subspaces of Rn, equipped with its unique

rotation-invariant Haar probability measure µn,k.

Lemma 1.13. (See, e.g., [MS00, Fact 3.2(c)] and [MP00, Lemma 6].) Let k∈{1, . . . , n−1},
x∈Rn, and ε≤ 1√

e
. Then

µn,k

({

F ∈Gn,k

∣

∣

∣

∣

∣

|PF (x)|≤ε

√

k

n
· |x|

})

≤
(√

eε
)k

,

where PF is the surjective orthogonal projection mapping Rn onto F . �

(See also [Vem04, Ver17] for more beautiful results on the theory and applications of random
projections.) A simple consequence of Lemma 1.13 is the following existential result.

Proposition 1.14. Let γ > 0 and x1, . . . , xN ∈ Rn be such that |xi − xj| ≥ γ for all dis-
tinct i, j. Then, following the notation of Lemma 1.13, there is an F ∈ Gn,k such that

|PF (xi)− PF (xj)| ≥
√

k

en
· γ

N2/k
for all distinct i, j.

Proof: Let z{i,j} := |xi − xj|. Then our assumption becomes z{i,j} ≥ γ for all distinct i, j,
and there are no more than N(N − 1)/2 such pairs {i, j}. By Lemma 1.13 we have, for any

fixed {i, j}, that |PF (z{i,j})|≥ ε
√

k
n
z{i,j} with probability at least 1 − (

√
eε)

k
. So the union

bound for probabilities implies that, for all distinct i, j, we have |PF (xi)− PF (xj)|≥εγ
√

k
n

with probability at least 1− N(N−1)
2

(
√
eε)k. So our desired F exists when ε= 1√

eN2/k and we

are done. �

We now prove our main results.

2. Extending Classical Univariate Bounds to Exponential Sums: Proving

Theorem 1.5

The following simple quantitative bound on exponential sums will prove quite useful. In
what follows, we let [j] :={1, . . . , j}.

Proposition 2.1. Suppose t≥3 and g(z1) :=
∑t

j=1 e
ajz1+βj satisfies a1< · · · <at and βj∈C

for all j. Suppose further that u ∈ Trop(g), ℓ is the largest index such that
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∣

∣eaℓu+βℓ
∣

∣ = maxj∈[t]
∣

∣eaju+βj
∣

∣, and we set δℓ :=min
p, q ∈ [ℓ]&p 6= q

|ap − aq|. Then for any N ∈ N and

z1∈
[

u+ log(N+1)
δℓ

,∞
)

× R we have

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+βj

∣

∣

∣

∣

∣

< 1
N

∣

∣eaℓz1+βℓ
∣

∣.

Proof: First note that 2≤ℓ≤ t by construction. Let bj :=Re(βj), r :=Re(z1), and observe
∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+βj

∣

∣

∣

∣

∣

≤
ℓ−1
∑

j=1

∣

∣eajz1+βj
∣

∣ =
ℓ−1
∑

j=1

eajr+bj =
ℓ−1
∑

j=1

eaj(r−u)+aju+bj .

Now, since aj+1 − aj≥δℓ for all j∈{1, . . . , ℓ− 1}, we obtain aj≤aℓ − (ℓ− j)δℓ. So for r>u

we have

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j)δℓ)(r−u)+aju+bj ≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j)δℓ)(r−u)+aℓu+bℓ , and thus

∣

∣

∣

∣

∣

ℓ−1
∑

j=1

eajz1+bj

∣

∣

∣

∣

∣

≤ e(aℓ−(ℓ−1)δℓ)(r−u)+aℓu+bℓ

ℓ−1
∑

j=1

e(j−1)δℓ(r−u)

= e(aℓ−(ℓ−1)δℓ)(r−u)+aℓu+bℓ

(

e(ℓ−1)δℓ(r−u) − 1

eδℓ(r−u) − 1

)

< e(aℓ−(ℓ−1)δℓ)(r−u)+aℓu+bℓ

(

e(ℓ−1)δℓ(r−u)

eδℓ(r−u) − 1

)

=
eaℓr+bℓ

eδℓ(r−u) − 1
.

To prove our desired inequality, it thus clearly suffices to enforce e(r−u)δℓ − 1≥N . The last

inequality clearly holds for all r≥u+ log(N+1)
δℓ

, so we are done. �

It is then easy to prove that the largest (resp. smallest) point of Re(Z(g)) can’t be too
much larger (resp. smaller) than the largest (resp. smallest) point of Trop(g). Put another
way, we can give an explicit vertical strip containing all the complex roots of g.

Corollary 2.2. Suppose g is a univariate exponential t-sum with real spectrum and minimal
frequency spacing δ(g) := minp 6=q |ap − aq|, umin := minTrop(g), and umax := maxTrop(g).

Then Re(Z(g)) is contained in the open interval
(

umin − log 2
δ(g)

, umax +
log 2
δ(g)

)

.

Our earlier Lemma 1.6 tell us that the log 2 in Corollary 2.2 can not be replaced by any
smaller constant. While the polynomial analogue of Corollary 2.2 goes back to work of
Cauchy, Birkhoff, and Fujiwara pre-dating 1916 (see [RS02, pp. 243–249, particularly bound
8.1.11 on pg. 247] and [Fuj16] for further background) we were unable to find an explicit
bound for exponential sums like Corollary 2.2 in the literature. So we supply a proof below.

Proof of Corollary 2.2: Replacing z1 by its negative, it clearly suffices to prove

Re(Z(g)) ⊂
(

−∞, umax +
log 2
δ(g)

)

. Writing g(z1) =
∑t

j=1 e
ajz1+bj with a1 < · · · < at, let ζ

denote any root of g, r := Re(ζ), and βj := Re(bj) for all j. Since we must have
∑t−1

j=1 e
ajζ+bj = −eatζ+bt , taking absolute values implies that

∣

∣

∣

∑t−1
j=1 e

ajζ+bj

∣

∣

∣
=
∣

∣eatζ+bt
∣

∣.

However, this equality is contradicted by Proposition 2.1 for Re(z1)≥umax +
log 2
δ(g)

. So we are done. �

Proposition 1.3 will then be a simple consequence of Corollary 2.2 and the following special
case of a fundamental result of Moreno.
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Theorem 2.3. (Special case of [Mor73, Main Theorem, pg. 73].) Suppose 1, α1, α2, α3 ∈R

are linearly independent over Q, g(z1) := eα1z1 + eα2z1 + eα3z1, σ ∈ R, and the inequalities
|eαiσ|≤∑j∈{1,2,3}\{i} |eαjσ| hold for all i∈{1, 2, 3}. Then σ is a limit point of Re(Z(g)). �

Proof of Proposition 1.3: Let g(z1) := e
√
2z1 + e

√
3z1 + e

√
5z1 . Clearly then,

√
3 −

√
2<√

5 −
√
3, Trop(g)={0}, and thus Corollary 2.2 immediately implies the containment X⊆

(

− log 2√
3−

√
2
, log 2√

3−
√
2

)

. Furthermore, since g is an analytic function, its zeroes are isolated, and

thus must be countable in number [Ahl79].

Now note that e
√
5u > e

√
3u > e

√
2u for u > 0, and this ordering is reversed for u < 0.

Furthermore, the same orderings apply to the corresponding derivatives. An elementary
calculation then reveals that the hypothesis for Theorem 2.3 is satisfied at any σ in the open
interval (−1.06, 1.06). So we are done. �

Our next result isolates vertical strips where no roots of g can lie.

Corollary 2.4. Suppose g(z1) :=
∑t

j=1 e
ajz1+βj satisfies a1 < · · · < at, βj ∈ C for all j,

δ(g) := minp 6=q |ap − aq|, and that u1 and u2 are consecutive points of Trop(g) satisfying

u2≥u1 +
log 9
δ(g)

. Then the vertical strip
[

u1 +
log 3
δ(g)

, u2 − log 3
δ(g)

]

× R contains no roots of g.

Proof: First note that t≥3 since #Trop(g)≥2. Let ℓ be the unique index such that
∣

∣eaℓu1+βℓ
∣

∣=maxj∈[t]
∣

∣eaju1+βj
∣

∣ and
∣

∣eaℓu2+βℓ
∣

∣=maxj∈[t]
∣

∣eaju2+βj
∣

∣.
There is a unique such index because, by the definition of Trop(g), the point (aℓ,Re(βℓ))
lies at the intersection of two lines: One line goes through a pair of distinct points of the
form (ai,Re(βi)) with

∣

∣eaiu1+βi
∣

∣=maxj∈[t]
∣

∣eaju1+βj
∣

∣, while the other goes through a pair of

distinct points of the form (ak,Re(βk)) with
∣

∣eaku2+βk
∣

∣=maxj∈[t]
∣

∣eaju2+βj
∣

∣.

By Proposition 2.1, we have
∣

∣

∣

∑ℓ−1
j=1 e

ajz1+βj

∣

∣

∣
< 1

2

∣

∣eaℓz1+βℓ
∣

∣ for all z1 ∈
[

u1 +
log 3
δ(g)

,∞
)

and,

employing the change of variables z1 7→ −z1, we obtain
∣

∣

∣

∑t
j=ℓ+1 e

ajz1+βj

∣

∣

∣
< 1

2

∣

∣eaℓz1+βℓ
∣

∣ for all

z1 ∈
(

−∞, u2 − log 3
δ(g)

]

. So
∣

∣

∣

∑

j 6=ℓ e
ajz1+βj

∣

∣

∣
<
∣

∣eaℓz1+βℓ
∣

∣ in the stated vertical strip, and this

inequality clearly contradicts the existence of a root of g in
[

u1 +
log 3
δ(g)

, u2 − log 3
δ(g)

]

× R. �

An immediate consequence of Corollary 2.4 is that the roots of g always lie in the union

of open vertical strips
⋃

u∈Trop(g)

(

u− log 3
δ(g)

, u+ log 3
δ(g)

)

× R. It will in fact be the case that each

connected component of this union contains roots of g as well. To prove this, we will need
some refined integral estimates.

2.1. Winding Numbers and Rectangles Around Tropical Points. It will be useful to
first observe a basic fact on winding numbers along line segments.

Proposition 2.5. Suppose I⊂C is any (compact) line segment and g and h are functions

analytic on a neighborhood of I with |h(z)| < |g(z)| for all z∈I. Then
∣

∣

∣
Im
(

∫

I
g′+h′

g+h
dz −

∫

I
g′

g
dz
)
∣

∣

∣
< π.

Proof: The quantity V1 := Im
(

∫

I
g′

g
dz
)

(resp. V2 := Im
(

∫

I
g′+h′

g+h
dz
)

) is nothing more than

the variation of the argument of g (resp. g + h) along the segment I. Since I is compact,
|g| and |g+ h| are bounded away from 0 on I by construction. So we can lift the paths g(I)
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and (g + h)(I) (in C∗) to the universal covering space induced by the extended logarithm
function. Clearly then, V1 (resp. V2) is simply a difference of values of Im(Log(g)) (resp.
Im(Log(g+h))), evaluated at the endpoints I, where different branches of Log may be used
at each endpoint. In particular, at any z ∈ I, our assumptions on |g| and |h| clearly imply
that g(z) + h(z) and g(z) both lie in the open half-plane normal (as a vector in R2) to g(z).
So |Im(Log(g(z) + h(z)))− Im(Log(g(z)))|< π

2
at each of the two endpoints of I, and thus

|V1 − V2|< π
2
+ π

2
=π. �

We will also need the following technical fact on the total variation of the imaginary part
of g′/g along horizontal line segments.

Theorem 2.6. [Voo79, Thm. 2] Let g(z1) :=
∑t

j=1 e
ajz1+βj with a1< · · · <at and βj ∈C for

all j. Also let u, v∈R with g(u)g(v) 6=0 and define N to be the number of roots of g on the

closed interval [u, v]. Then

∫ v

u

∣

∣

∣

∣

Im

(

g′(z)

g(z)

)∣

∣

∣

∣

dz +Nπ≤(t− 1)π. �

Note that since the βj are allowed to be complex, the bound above continues to hold if we
integrate over any horizontal line segment in C. Voorhoeve proved earlier in [Voo76, Lemma

1] that, for any f meromorphic on an interval [u, v]⊂R, the function Im
(

f ′

f

)

is analytic on

[u, v], save for a finite set of removable singularities. So the integral above is well-defined
even if g vanishes in the open interval (u, v). [Voo79, Thm. 2] in fact gives a sharper upper
bound depending on the imaginary parts of the differences of the βj, but we will only need
the weaker bound stated above. See also [Voo77] for an elegant and fascinating development
of root counts for univariate exponential polynomials in various regions.

We now state our final key root count behind Theorem 1.5.

Lemma 2.7. Let g(z1) :=
∑t

j=1 e
ajz1+βj with t ≥ 3, a1 < · · · < at, βj ∈ C for all j, and

let δ(g) := minp 6=q |ap − aq|, umin := minTrop(g), and umax := maxTrop(g). Let Ug be the

union of open intervals
(

umin − log 2
δ(g)

, umax +
log 2
δ(g)

)

∩ ⋃

u∈Trop(g)

(

u− log 3
δ(g)

, u+ log 3
δ(g)

)

. Let Γ be any

connected component of Ug and let p (resp. q) be the minimal (resp. maximal) index such
that

∣

∣eap·u+βp
∣

∣=maxj
∣

∣eaj ·u+βj
∣

∣ (resp.
∣

∣eaq ·u+βq
∣

∣=maxj
∣

∣eaj ·u+βj
∣

∣) for some u∈Γ. Then q>p

and g has at least one root in the rectangle Γ×
[

0, 2(t+1)π
δ(g)

]

.

Proof of Lemma 2.7: That q>p follows easily from the definition of Trop(g): Trop(g)∩Γ
is non-empty by construction, and if u∈Γ \ Trop(g) then maxj

∣

∣eaj ·u+βj
∣

∣ is attained exactly
once. Furthermore, at least two terms of g must be maximized in norm at any u∈Trop(g)∩Γ,
and p (resp. q) must be no larger (resp. no smaller) than the index of any such term.
Now let γinf := inf Γ and γsup := supΓ. Since g is analytic, the Argument Principle (see,

e.g., [Ahl79]) tells us that the number of roots in our rectangle in question is exactly

A :=
1

2π
√
−1

∫

I−∪I+∪J−∪J+

g′(z)

g(z)
dz

where I− (resp. I+, J−, J+) is the oriented line segment from
(

γinf ,
2(t+1)π
δ(g)

)

(resp. (γsup, 0), (γinf , 0),
(

γsup,
2(t+1)π
δ(g)

)

)

to
(γinf , 0) (resp.

(

γsup,
2(t+1)π
δ(g)

)

, (γsup, 0),
(

γinf ,
2(t+1)π
δ(g)

)

),
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assuming no root of g lies on I− ∪ I+ ∪ J− ∪ J+. By Corollaries 2.2 and 2.4, there can be no
roots of g on I− ∪ I+. So let assume temporarily that there are no roots of g on J− ∪ J+.
By construction, any point of Trop(g) ∩ Γ is at least distance log 9

δ(g)
from any point of

Trop(g) \ Γ. So Proposition 2.1 tells us that when p>1 we have:

1
2

∣

∣

∣
eap(γinf+v

√
−1)+βp

∣

∣

∣
>

∣

∣

∣

∣

∣

p−1
∑

j=1

eaj(γinf+v
√
−1)+βj

∣

∣

∣

∣

∣

and 1
2

∣

∣

∣
eap(γinf+v

√
−1)+βp

∣

∣

∣
>

∣

∣

∣

∣

∣

t
∑

j=p+1

eaj(γinf+v
√
−1)+βj

∣

∣

∣

∣

∣

for all v ∈R. So then,
∣

∣

∣
eap(γinf+v

√
−1)+βp

∣

∣

∣
>

∣

∣

∣

∣

∣

∑

j 6=p

eaj(γinf+v
√
−1)+βj

∣

∣

∣

∣

∣

. (When p= 1 Proposition

2.1 yields the same conclusion in just one step.) So we can apply Proposition 2.5 and deduce

that
∣

∣

∣
Im
(

∫

I−

g′(z)
g(z)

dz −
∫

I−

(eapz+βp )′

eapz+βp dz
)∣

∣

∣
< π. So then, since

∫

I−

(eapz+βp )′

eapz+βp dz =
∫

I−
apdz =

−2π
√
−1(t+1)ap
δ(g)

, we clearly obtain

(1)

∣

∣

∣

∣

Im

(
∫

I−

g′(z)

g(z)
dz

)

− −2π
√
−1(t+ 1)ap
δ(g)

∣

∣

∣

∣

< π.

An almost identical argument (applying Propositions 2.1 and 2.5 again, but with the term
∣

∣

∣
eaq(γsup+v

√
−1)+βq

∣

∣

∣
dominating instead) then yields

(2)

∣

∣

∣

∣

Im

(
∫

I+

g′(z)

g(z)
dz

)

− 2π
√
−1(t+ 1)aq
δ(g)

∣

∣

∣

∣

< π.

So now we need only prove sufficiently sharp estimates on Im
(

∫

J±

g′(z)
g(z)

dz
)

. Toward

this end, observe that Theorem 2.6 implies directly that

∫

J±

∣

∣

∣

∣

Im

(

g′(z)

g(z)

)∣

∣

∣

∣

dz≤(t− 1)π.

So combining with our estimates (1) and (2), and the additivity of integration, we obtain
∣

∣

∣

∣

A− (aq − ap)(t+ 1)

δ(g)

∣

∣

∣

∣

<t, in the special case where no roots of g lie on J− ∪ J+.

To address the case where a root of g lies on J−∪J+, note that the analyticity of g implies
that the roots of g are a discrete subset of C. So we can find arbitrarily small η>0 with the

boundary of the slightly stretched rectangle Γ×
[

−η, 2(t+1)π
δ(g)

+ η
]

not intersecting any roots

of g, and define a similar normalized integral implementing the Argument Principle, which
we’ll call Aη, over the new contour. By the special case of our lemma already proved, we

have

∣

∣

∣

∣

∣

∣

Aη −
(aq − ap)

(

t+ 1 + ηδ(g)
π

)

δ(g)

∣

∣

∣

∣

∣

∣

<t. Let nΓ be the number of roots of g in the rectangle

Γ×
[

0, 2πt
δ(g)

]

. Since Aη=nΓ for η sufficiently small, we obtain

∣

∣

∣

∣

nΓ −
(aq − ap)(t+ 1)

δ(g)

∣

∣

∣

∣

≤ t. So

nΓ≥ (aq−ap)(t+1)

δ(g)
− t≥ (t+1)δ(g)

δ(g)
− t=1, and g thus indeed has at least one root in Γ×

[

0, 2(t+1)π
δ(g)

]

. �

2.2. The Proof of Theorem 1.5: First note that the graph of Ng is the lower hull of an
intersection P of exactly t half-planes with edges of distinct slopes. So the polyhedron P
has at most t edges, at most t − 1 vertices, at least one vertex (since t≥ 2), and thus the
graph of Ng has at most t − 1 corners since corners correspond to vertices of P . We thus
obtain s∈{1, . . . , t− 1}.

Assertion (1) on the containment Re(Z(g))⊂Ug is immediate from Corollaries 2.2 and 2.4.
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Assertion (2) on each connected component of Ug containing at least one point from
Re(Z(g)) is immediate from Lemma 2.7.
To prove Assertion (3), we must show that near every point u∈Trop(g) there is a point

r ∈Re(Z(g)) within distance
(log 9)s−log 9

2

δ(g)
. (The remaining inequalities follow from the fact

that s≤ t− 1 and an elementary calculation.) So let Γ be the unique connected component
of Ug containing u and let m :=#(Trop(g)∩Γ). We will prove that there is an r∈Re(Z(g))

within the distance
(log 9)m−log 9

2

δ(g)
of v, yielding an inequality at least as tight as needed.

Toward this end, observe first that consecutive points of Trop(g)∩Γ must be within distance
strictly less than log 9

δ(g)
. The maximal possible distance between v and r occurs when these

two points lie at opposite extremes of the open interval Γ. Since v must be no closer
than log 2

δ(g)
to an endpoint of Γ, the maximal possible distance must be Length(Γ) − log 2

δ(g)
<

log 2
δ(g)

+ log 3
δ(g)

+ log 3
δ(g)

+ (m − 2) log 9
δ(g)

− log 2
δ(g)

=
(log 9)m−log 9

2

δ(g)
, assuming (without loss of generality)

that v is as far left as possible and r is as far right as possible. �

3. Algorithmic Complexity: The Proofs of Theorems 1.1 and 1.9

The BSS model over R [BCSS98] naturally augments the classical Turing machine [Pap95,
AB09, Sip12] by allowing field operations and comparisons over R in unit time. We are in
fact forced to move beyond the Turing model since our exponential sums involve arbitrary
real numbers, and the Turing model only allows finite bit strings as inputs. We refer the
reader to [BCSS98] for further background.
We recall here some basic facts about the set of inputs on which a BSS machine over R

terminates.

Theorem 3.1. [BCSS98, Thm. 1, Pg. 52] The halting set of a BSS machine over R is a
countable union of semi-algebraic sets. �

The converse of Theorem 3.1 fails in general: For instance, if S is any countably infinite
subset of a transcendence basis for R over Q, then S can not be the halting set of any BSS
machine over R. (One can even write such subsets in terms of infinite series, via an explicit
basis found by von Neumann [vNeu28] around 1928.) This follows immediately from the
following consequence of the development in [BCSS98, Sec. 2.3]:

Proposition BCS. Any countable subset of R that is the halting set for a BSS machine over
R must be a subset of the algebraic closure of a real extension of Q of finite transcendence
degree. �

Let us also recall the following basic facts about semi-algebraic sets, i.e., the solution sets
of finite collections of polynomial inequalities and polynomial equalities in Rn: First, semi-
algebraic sets are closed under all Boolean operations (intersection, union, and complement).
Also, semi-algebraic sets admit a natural notion of dimension, via the largest d permitting a
semi-algebraic embedding of a real d-ball (see, e.g., [BPR06, Ch. 5, Sec. 5.3, pp. 170–172]).
Some additional qualitative facts we’ll also need can be summarized as follows:

Semi-Algebraic Tameness Theorem. Suppose S ⊂R2 is semi-algebraic, and S̄ and S◦

respectively denote the closure and interior of S. Then:
1. S̄, S◦, and ∂S := S̄ \ S◦ are semi-algebraic.
2. S has only finitely many connected components, each of which is semi-algebraic.



12 ALPEREN A. ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

3. If, in addition, S is a connected curve, then S has only finitely many singularities.
4. Let ρ : R2 −→ R denote the projection defined by ρ(x, y)=x. Then, continuing Assertion

(3), there is an nS∈N such that all fibers of ρ have cardinality at most nS.

Note: Neither Proposition BCS nor the preceding tameness theorem appeared in the pub-
lished (Mathematische Annalen, Vol. 377, pp. 863–882 (2020)) version of this paper. In
particular, we inserted the theorem above after Alexander Rashkovskii kindly pointed out in
late July 2020 that our published proof of Theorem 1.1 had an error. We inserted Proposition
BCS after a discussion with Lenore Blum, Felipe Cucker, and Mike Shub, on the simplest
failures of the converse of Theorem 3.1. We apply the tameness theorem to give a corrected
proof of Theorem 1.1 below, but we will have no further need for Proposition BCS. ⋄
Proof of the Semi-Algebraic Tameness Theorem: The first two assertions of (1) are
exactly the content of [BPR06, Ch. 3, Prop. 3.1, pg. 84]. The final assertion of (1) is then
immediate since semi-algebraic sets are closed under Boolean operations by definition.
Assertion (2) is immediate from the notion of cylindrical decomposition. The latter is a

refined decomposition of a semi-algebraic set into finitely many (semi-algebraic) connected
components, and the existence of such a decomposition is a classical fact: See, e.g., [BPR06,
Ch. 5, Thm. 5.6, pg. 163]. In particular, the tameness of fibers from Assertion (4) is also an
immediate consequence of cylindrical decomposition.
Assertion (3) is a direct consequence of the notion of semi-algebraic cell stratification of R2

adapted to S. The latter is a partition S into finitely many semi-algebraic smooth manifolds
(here, each diffeomorphic to an open interval or a point) called strata, such that the closure
of any stratum is a union of strata. That such stratifications exist (and in much greater
generality) is also a classical fact: See, e.g., [BPR06, Ch. 5, Thm. 5.38, pg. 177]. �

3.1. The Proof of Theorem 1.1. Let C∗ :=C \ {0} and let
R :=Re(Z(1− ez1 − ez2)) and S :={(log |x|, log |y|) | 1− x− y = 0; x, y∈C∗}.

Via the equality log
∣

∣

∣
eα+

√
−1β
∣

∣

∣
=α (valid for any α, β∈R) we see that

(x, y)∈Re(Z(1− ez1 − ez2)) ⇐⇒ (x, y)=(log |ez1|, log |ez2|) for some (z1, z2)∈C2 with 1− ez1 − ez2 =0.
Since the exponential function defines a surjection from C onto C∗ we then clearly have
R=S.
Now note that J := {(|w1|, |w2|) | 1 − w1 − w2 = 0; w1, w2 ∈C∗} is exactly the following

semi-infinite strip with corners deleted: I :={(x, y)∈R2 | − 1≤y − x≤1, x+ y≥1, and xy 6=0}.
This is because w1 + w2 = 1 =⇒ |w1 + w2| = 1, |w1| = |1 − w2| = |w2 − 1|, and |w2| =
|1−w1|= |w1 − 1|. So by the Triangle Inequality we obtain |w1|+ |w2|≥1, |w1| ≥||w2| − 1|,
and |w2| ≥ ||w1| − 1|, and thus (setting x= |w1| and y= |w2|) we obtain J ⊆ I. To see that

I ⊆ J , assume (x, y)∈ I and consider yθ := 1 + xeθ
√
−1 for θ ∈ [0, π]. Clearly x> 0. So then

|yθ|2=(1+(cos θ)x)2+(sin θ)2x2=1+2(cos θ)x+x2 is a decreasing differentiable function of
θ, with |y0|=x+ 1 and |yπ|= |x− 1|. Since |x− 1|≤y≤x+ 1 there must then be a θ∈ [0, π]

with y= |yθ|. Letting w1 :=−xeθ
√
−1 and w2 :=yθ, we then obtain w1 + w2=1, |w1|= |x|=x,

and |w2|=y. So we have obtained I⊆J and thus I=J .
Clearly then, R is simply the image of I under the (differentiable) coordinate-wise loga-

rithm map. In particular, we see that the curve Y defined by y= log(1 + ex), as x ranges
over all of R, is a connected component of the boundary ∂R.
By Theorem 3.1, if membership in R is decidable, then R must be a countable union

⋃

i∈N Si of semi-algebraic sets Si. Let W := Y ∩ ([0, 1] × R), abusing notation slightly by
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identifying C with R2. Then W is compact and infinite, and thus some Si must have W ∩Si

infinite. Note in particular that W ∩ S◦
i = ∅ (since S◦

i is in the interior of R) and thus (by
the Semi-Algebraic Tameness Theorem) Si \S◦

i must be a finite union of isolated points and
smooth connected semi-algebraic curves. In particular, Si must contain a smooth connected
semi-algebraic curve C such that W ∩ C is infinite. Recalling that ρ : R2 −→ R is the
projection defined by ρ(x, y) = x, we may assume further that C is the graph of a smooth
algebraic function f on a non-empty open sub-interval of (0, 1), via the Implicit Function
Theorem and Assertion (4) of the Semi-Algebraic Tameness Theorem. (In particular, this
might entail replacing C with a non-empty, connected (and semi-algebraic), open subset of
C.)
Now observe that W ∩ C (resp. ρ(W ∩ C)) must have at least one accumulation point

since W (resp. [0, 1]) is compact, and thus the graphs of the smooth functions log(1 + ex)
and f agree on an infinite sequence of points with a limit point. But this is impossible,
since log(1 + ex) is a transcendental function. In particular, since log(1 + ex) is analytic on
the domain R× (−π, π), the function f must have an analytic continuation to an algebraic
function with an essential singularity at ∞ [Ahl79, Pg. 127]. Since algebraic functions can
only have zeroes or poles of finite fractional order at ∞, we obtain a contradiction. �

Note: The key obstruction to membership in Re(Z(g)) being decidable — demonstrated
above — is that the boundary of Re(Z(1− ez1 − ez2)) is not expressible as a countable union
of semi-algebraic sets. Indeed, it is easy to express the interior R◦ of R :=Re(Z(1−ez1−ez2))
as a countable union of disks: simply consider the union of all open disks of maximal radius
that lie in R◦ and are centered at some rational point in R◦. ⋄

3.2. Proving Theorem 1.9. We will need some supporting results on linear programming
before starting our proof of Theorem 1.9. The results we’ll need are covered with great
clarity in well-known monographs such as [Sch86, GLS93, Gri13].

Definition 3.2. Given any matrix M ∈RN×n with ith row mi, and c := (c1, . . . , cN) ∈RN ,
the notation Mx≤ c means that m1 · x≤ c1, . . . ,mN · x≤ cN all hold. These inequalities are
called constraints, and the set of all x∈RN satisfying Mx≤c is called the feasible region of
Mx≤c. We also call a constraint active if and only if it holds with equality. Finally, we call
a constraint redundant if and only if the corresponding row of M and corresponding entry
of c can be deleted without affecting the feasible region of Mx≤c. ⋄

Lemma 3.3. Suppose n is fixed. Then, given any c∈RN and M ∈RN×n, we can, in time
polynomial in N , find a submatrix M ′ of M , and a subvector c′ of c, such that the feasible
regions of Mx ≤ c and M ′x ≤ c′ are equal, and M ′x ≤ c′ has no redundant constraints.
Furthermore, in time polynomial in N , we can also enumerate all maximal sets of active
constraints defining vertices of the feasible region of Mx≤c. �

Note that we are using the BSS model over R in the preceding lemma. In particular, we
are counting just field operations and comparisons over R, and these are the only operations
needed above. There are many possible choices for the underlying algorithm: For instance,
the classical Simplex Algorithm (using, say, Bland’s Anticycling Rule) very easily yields
Lemma 3.3. Note that the assumption that n be fixed is critical: As of October 2018, it is
still an open problem whether Linear Programming can be done in time polynomial in both
n and N in the BSS model over R (a.k.a. strongly polynomial-time in older terminology).
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Proof of Theorem 1.9: Let r ∈Rn be our input query point. Let bj :=Re(βj) for all j.
Using O(t log t) comparisons and O(n) arithmetic operations, we can first isolate all indices
such that maxj{aj · r + bj} is attained, so let j0 be any such index. (Note that these are
the same indices we would obtain if we were to maximize

∣

∣eaj ·z+βj
∣

∣.) We then obtain, say, J
equations of the form aj ·r+bj=aj0 ·r+bj0 andK inequalities of the form aj ·r+bj<aj0 ·r+bj0 .
Thanks to Lemma 3.3, we can determine the exact cell of Trop(f) containing r if J ≥ 2.

Otherwise, we obtain the unique cell of Rn\Trop(f) with relative interior containing r. Note
also that an (n−1)-dimensional face of either kind of cell must be contained in a hyperplane
of the form {u∈Rn | (aj1 − aj2) · u + (bj1 − bj2)=0} for some distinct indices j1 and j2. So
there are at most t(t − 1)/2 such (n − 1)-dimensional faces, and thus σr is the intersection
of at most t(t− 1)/2 half-spaces. So we are done. �

4. The Proof of Our Main Multivariate Bound: Theorem 1.10

Let us first observe that d≤min{n, t − 1} follows immediately from the basic fact that
any d-polytope in Rn has dimension at most n and at least d+ 1 vertices.
In what follows, for any real n × n matrix M and z ∈Rn, we assume that z is a column

vector when we write Mz. Also, for any subset S ⊆Rn, the notation MS := {Mz | z ∈ S}
is understood. The following simple functoriality properties of Trop(g) and Re(Z(g)) will
prove useful.

Proposition 4.1. Suppose g1 and g2 are n-variate exponential t-sums, α ∈ C∗, a ∈ Rn,
β :=(β1, . . . , βn)∈Cn, and g2 satisfies the identity g2(z)=αea·zg1(z1+β1, . . . , zn+βn). Then
Re(Z(g2))=Re(Z(g1))−Re(β) and Trop(g2)=Trop(g1)−Re(β). Also, if M ∈Rn×n and we
instead have the identity g2(z)=g1(Mz), then MRe(Z(g2))=Re(Z(g1)) and MTrop(g2)=Trop(g1). �

4.1. The Proof of Assertion (1) of Theorem 1.10. First note that, thanks to Propo-
sition 4.1, an invertible linear change of variables allows us to reduce to the special case
{a1, . . . , an+1} = {O, e1, . . . , en}, where O and {e1, . . . , en} are respectively the origin and
standard basis vectors of Rn. But this special case is well-known: One can either prove it
directly, or avail to earlier work on the spines of amoebae, e.g., [PR04, Thms. 1 & 2]. (See
also [For98, Prop. 3.1.8] or the remark following Theorem 8 on Page 33, and Theorem 12 on
Page 36, of [Rul03] for precursors.) �

4.2. The Proof of Assertion (2a) of Theorem 1.10. By Assertion (2b) (proved inde-
pendently in the next section) Z(g) is non-empty. So pick any z∈Z(g), let r :=Re(z), and
assume without loss of generality that

∣

∣ea1·z+β1

∣

∣≥
∣

∣ea2·z+β2

∣

∣≥ · · · ≥
∣

∣eat·z+βt
∣

∣. Since g(z)=0

implies
∣

∣ea1·z+β1

∣

∣=
∣

∣ea2·z+β2 + · · ·+ eat·z+βt
∣

∣, the Triangle Inequality immediately implies that
∣

∣ea1·z+β1

∣

∣≤ (t − 1)
∣

∣ea2·z+β2

∣

∣. Letting bj :=Re(βj) for all j and then taking logarithms we
obtain

a1 · r + b1 ≥ · · · ≥ at · r + bt and(3)

a1 · r + b1 ≤ log(t− 1) + a2 · r + b2(4)

For each j∈{2, . . . , t} let us then define ηj to be the shortest vector such that
a1 · (r + ηj) + b1 = aj · (r + ηj) + bj.

Note that ηj = λj(aj − a1) for some nonnegative λj since we are trying to affect the dot-

product ηj · (a1− aj). In particular, λj=
(a1−aj)·r+b1−bj

|a1−aj |2 so that |ηj|= |(a1−aj)·r+b1−bj |
|a1−aj | . (Indeed,

Inequality (3) implies that (a1 − aj) · r + b1 − bj≥0.)
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Inequality (4) implies that (a1 − a2) · r + b1 − b2 ≤ log(t − 1). We thus obtain

|η2| ≤ log(t−1)
|a1−a2| ≤ log(t−1)

δ(g)
. So let j0 ∈ {2, . . . , t} be any j minimizing |ηj|. We of course

have |ηj0|≤(log(t− 1))/δ(g) and, by the definition of ηj0 , we have
a1 · (r + ηj0) + b1=aj0 · (r + ηj0) + bj0 .

Moreover, the fact that ηj0 is the shortest among the ηj implies that
a1 · (r + ηj0) + b1≥aj · (r + ηj0) + bj

for all j: Otherwise, for some j′, we would have a1 · (r + ηj0) + b1<aj′ · (r + ηj0) + bj′ and
a1 · r + b1 ≥ aj′ · r + bj′ (the latter following from Inequality (3)). Taking a convex linear
combination of the last two inequalities, we would then obtain a µ∈ [0, 1) such that

a1 · (r + µηj0) + b1=aj′ · (r + µηj0) + bj′ .
Thus, by the definition of ηj′ , we would obtain |ηj′|≤µ|ηj0|< |ηj0| — a contradiction.
We thus have (i) a1 ·(r+ηj0)+b1=aj0 ·(r+ηj0)+bj0 , (ii) a1 ·(r+ηj0)+b1≥aj ·(r+ηj0)+bj

for all j, and (iii) |ηj0|≤(log(t−1))/δ(g). Together, these inequalities imply that u :=r+ηj0 ∈
Trop(g) and |r − u|≤(log(t− 1))/δ(g). �

4.3. The Proof of Assertion (2b) of Theorem 1.10. Thanks to Proposition 4.1, we can
apply a suitable orthogonal linear change of variables to assume that d= n. By the k = 1
case of Proposition 1.14 we then deduce that there exists a unit vector θ∈Rn such that

min
i 6=j

|ai · θ − aj · θ| ≥
δ(g)√
ent2

(5)

Now let u∈Trop(g) and write u=uθθ + u⊥
θ for some uθ∈R and u⊥

θ ∈Rn perpendicular to θ.

Our goal is to find z∈Cn with g(z)=0 and |Re(z)− u|≤
√
ent2((log 9)t−log 81

2 )
δ(g)

.

For z1 ∈C we then define the univariate exponential t-sum g̃(z1) :=
∑t

j=1 e
aj ·z1θ+aj ·u⊥

θ +βj .

g̃ is in fact the restriction of g to the complex line parametrized by l(z1) = z1θ + u⊥
θ .

In particular, g̃ has the same number of terms as g thanks to our choice of θ, and the
definition of Trop(g̃) implies that uθ∈Trop(g̃). By Theorem 1.5 there is an ω∈C such that

0= g̃(ω)=g(l(ω)) and |Re(ω)− uθ| ≤ ((log 9)t−log 81
2 )

δ(g̃)
. Since |Re(l(ω))− u|= |(Re(ω)− uθ)θ|,

and δ(g̃)≥ δ(g)√
ent2

by Inequality (5), we can conclude by taking z := l(ω). �

4.4. The Proof of Assertion (3) of Theorem 1.10. Since ϕ(r) = 0 it is clear that
Re(Z(g))∋r. It is easily checked that Trop(g) is the codimension 1 part of the outer normal
fan of the standard n-simplex in Rn. So r is in fact at distance (log(t− 1))/δ from Trop(g)
because r lies in the negative orthant and is at distance (log(t − 1))/δ from each of the
coordinate hyperplanes of Rn. �
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