
mathematics of computation
volume 56, number 193
january 1991, pages 329-347

FINDING ISOMORPHISMS BETWEEN FINITE FIELDS

H. W. LENSTRA, JR.

Abstract. We show that an isomorphism between two explicitly given finite

fields of the same cardinality can be exhibited in deterministic polynomial time.

1. Introduction

Every finite field has cardinality p" for some prime number p and some

positive integer « . Conversely, if p is a prime number and « a positive integer,

then there exists a field of cardinality p", and any two fields of cardinality p"

are isomorphic. These results are due to E. H. Moore (1893) [10]. In the present

paper we are interested in an algorithmic version of his theorem, in particular

of the uniqueness part.

We say that a finite field is explicitly given if, for some basis of the field over

its prime field, we know the product of any two basis elements, expressed in the

same basis. Let, more precisely, p be a prime number and « a positive integer.

Then by explicit data for a finite field of cardinality p" we mean a system of

« elements (ajjk)" k=x of the prime field Fp = Z/pZ suchthat F^ becomes

a field with the ordinary addition and multiplication by elements of Fp , and

the multiplication determined by

n

eiej = Y.aijkek>
k = \

where ex,e2, ... ,en denotes the standard basis of F" over F . For example,

if we know an irreducible polynomial / E F LY] of degree « , then such explicit

data are readily calculated, since Fp[X]/fF[X] is a field of cardinality p".

Conversely, given explicit data for a field of cardinality p" , one can find an

irreducible polynomial f G¥ [X] of degree « by means of a polynomial-time

algorithm (see Theorem (1.1) below). By polynomial-time we mean that the time

used by the algorithm—i.e., the number of bit operations that it performs—

is bounded by a polynomial function of \ogp  and  « .   It is supposed that
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330 H. W. LENSTRA, JR.

the elements of F   are represented in the conventional way, so that the field

operations in F   can be performed in time (log/?) (   .

It is not known whether there exists a polynomial-time algorithm that, given

p and «, constructs explicit data for a finite field of cardinality p". If the

generalized Riemann hypothesis is valid, then such an algorithm exists [1, 4].

Also, V. Shoup has shown [11] that the problem can be reduced to the problem

of factoring polynomials in one variable over finite fields into irreducible factors.

For the latter problem, no polynomial-time algorithm is known, even if the

generalized Riemann hypothesis is assumed; there does exist an algorithm that

runs in time (pn) ' (see [5, §4.6.2]), so for small p the problem is solved.

If random algorithms are allowed, then both the problem of constructing finite

fields and the problem of factoring one-variable polynomials over finite fields

have perfectly satisfactory solutions, both from a practical and a theoretical

point of view (see [7]).

Theorem (1.1). There exists a polynomial-time algorithm that, given a prime

number p, a positive integer «, and any of (a), (b), (c), constructs the two

others:

(a) explicit data for afield of cardinality pn ;

(b) an irreducible polynomial in F [X] of degree n;

(c) for each prime number r dividing «, an irreducible polynomial in Fp[X]

of degree r.

The only nontrivial assertion of this theorem is that (c) suffices to construct

(a) and (b). If for each prime number r that is at most «, an irreducible

polynomial in Fp[X] of degree r were known, then (a) and (b) could be con-

structed using auxiliary cyclotomic extensions of F . In our proof, which is

given in §9, we work with auxiliary cyclotomic ring extensions of F , which

can be constructed without any hypothesis. The other assertions of the theorem

are proved in §2.

We now come to the uniqueness part of Moore's theorem. Suppose that

two finite fields of the same cardinality are explicitly given, can one find an

isomorphism between them in polynomial time? The isomorphism is to be

represented by means of its matrix on the given bases of the fields over the

prime field.

For this second problem, the same results have been obtained as for the first

problem. Thus, a polynomial-time algorithm exists if the generalized Riemann

hypothesis is true, as was shown by S. A. Evdokimov [4]. Also, the problem

can be reduced to factoring polynomials in one variable over finite fields. To

see this, write the first field as ¥p[X]/fF[X] ; then finding an isomorphism is

equivalent to finding a zero of / in the other field. This solves the problem if

p is small, and also if random algorithms are allowed, as is the case in practice.

In the present paper we prove the same result without any restriction.

Theorem (1.2). There exists a polynomial-time algorithm that, given explicit data

for two finite fields of the same cardinality, finds an isomorphism between them.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



FINDING ISOMORPHISMS BETWEEN FINITE FIELDS 331

The proof uses the same technique as the proof of Theorem (1.1). The

result of Evdokimov that we just mentioned depends on auxiliary cyclotomic

extensions of F , and it is to construct these that the generalized Riemann

hypothesis is needed. In our proof we use ring extensions, which can be obtained

for free.

The contents of this paper are as follows. In §2 we discuss what can be

done if explicit data for a finite field are available, and we define what is meant

by explicit data for field extensions and field homomorphisms. In §3 we show

how normal bases can be found in polynomial time. Normal bases are not

absolutely vital for our purposes, but they provide an elegant solution to a

technical problem that comes up later (see (5.6)), and the result is of interest in

itself as well. In §§4, 5, and 6, we do not deal with algorithms at all. Section 4 is

devoted to algebraic properties of certain cyclotomic ring extensions that need

not be fields. A special role is played by the Teichmüller subgroup of the group

of units of such a ring extension. In §5 we show that knowing an extension of

given prime degree of a finite field is equivalent to knowing a generator of this

Teichmüller subgroup. Conversely, such a generator can be used to make prime

power degree extensions, as we show in §6. It is clear that such results can be

used to make prime power degree extensions out of prime degree extensions

and thus complete the proof of Theorem (1.1). Before we carry this through,

we have to deal with certain exceptional cases. The case that the given prime

equals the characteristic of the field is dealt with, by well-known techniques, in

§7. A second exceptional case is considered in §8. In this section we show that

techniques from linear algebra can in certain cases be used to solve problems

of a multiplicative nature. As an application we solve, in a theoretical sense, a

minor problem that comes up in primality testing. Finally, in §9 we formulate

and prove theorems that are slightly more general than Theorems (1.1) and

(1.2).
Although the algorithms presented in this paper are not necessarily ineffi-

cient, I do not expect that in practice they can compete with »he probabilistic

algorithms referred to above. Accordingly, I have refrained from estimating

the running times of the various algorithms precisely, and from optimizing the

algorithms from either a theoretical or a practical point of view.

2. Explicit data

Let p be a prime number, « a positive integer, and (a. k)" k=x explicit

data for a field of cardinality p". Denote by E the field with underlying set

F" that is determined by these data, as described in the introduction. We say

in this situation also that (ajjk)" k=x are explicit data for the field E. By

ex, ... ,en we denote the standard basis of F" over F .

Given such explicit data, the unit element 1 of £ is characterized by the

property 1 • el = ex. If we write 1 = ¿~^¡ zie¡, with z¡ G F , then it follows that
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(Zj)"=i is the unique solution of the system of linear equations

A Í 1   if k = 1,

over F . This system can be solved in polynomial time by the usual techniques

from linear algebra. The divisions in the field ¥p that are needed by these

techniques can be performed by means of the extended Euclidean algorithm [5,

§4.5.2]. It follows that the unit element of E can be determined in polynomial

time.

Once the unit element is determined, we can in a similar way find the inverse

of any given nonzero element a G £ as the solution of xa = 1 , which can

again be viewed as a system of « linear equations over F^ . We conclude that

the field operations in E can all be performed in polynomial time.

By repeated squarings and multiplications, we can calculate a   for any a G E

and any positive integer k in time (« + log/7 + log/c)      .  This leads to an

alternative method to calculate 1 and a~  , since \ = epx ~   and a~   = ap ~

for a ¿ 0.

If m is a positive integer, and (b¡jk)'" k=x are explicit data for a field F

of cardinality p", then by explicit data for a field homomorphism from E

to F we mean a matrix (c¡¡)x<¡<m \<¡<„ Wlin entries from Fp such that the

map F" —> F'" sending ix¡)"=] to (¿y_, c,-*)™, is a field homomorphism

4>: E —► F . We say in this situation also that (c/,)1<(<m \<J<n are explicit data

for the field homomorphism (j). For example, explicit data for the unique field

homomorphism F —> E are readily derived from the coordinates z¡ of the

unit element of E .

Calculating e\, ... , epn , we can find in polynomial time explicit data for the

Frobenius automorphism a: E —> E that sends each a G E to ap . Likewise,

explicit data can be found for each power of a .

We next determine the subfields of E. These are in one-to-one correspon-

dence with the divisors d of «. Notice that these divisors can all easily be

found in time « (1). Let d be a divisor of «. Then we can calculate the

matrix of the F -linear map E —> E that sends each a G E to a a- a, and

using techniques from linear algebra, we can find a basis for the kernel of this

map, which is precisely the unique subfield of E of cardinality p . Expressing

the product of any two basis elements of this subfield as a linear combination of

the same basis, we then obtain explicit data for a field of cardinality p , as well

as for the inclusion map of this field to E . All this can be done in polynomial

time.

Let r be a prime number and t a positive integer such that r divides « .

Applying the above to the divisors r and r'~ of «, we can find bases of

the subfields of degree r and r'~ over F . Checking the basis elements of

the former field one by one, we can find an element ß of the field of degree

r   that is not in the field of degree r'~  . Then ß has degree r   over F^ , so
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ßr = Yf,=o cjß' f°r certain uniquely determined ct G F , which can be found

by solving a system of linear equations. The polynomial Xr -5Z/JÖ c/^' 's tne

irreducible polynomial of ß over F . It is irreducible in F [X] and of degree

r . Taking t = 1 , we see that, in Theorem (1.1), we can construct (c) from (a)

in polynomial time.

Let d be any divisor of «, and write d as a product of prime powers r

that are pairwise relatively prime. For each r, let ß = ßr be an element of

degree r , as above. It is well known that the degree of y = Ylr ßr over F is

then equal to T[r r = d. (It clearly divides d ; to show that it actually equals

d, it suffices to remark that for each r the degree r of ßr = y - J2/jrß/

divides the 1cm of the degrees of y and the ßr,.) As above, we can use y to

determine an irreducible polynomial in F [X] of degree d . Applying this to

d = n , we see that (a) in Theorem (1.1) can be used to construct (b).

We already saw in the introduction how (b) in Theorem (1.1) can be used

to construct (a), and once one has (a) one can construct (c) as above. The

remaining part of the proof of Theorem (1.1), namely how to construct (a) and

hence (b) starting from (c), is given in §9.

In the following section we shall see that explicit data for a finite field can

also be used to determine a normal basis for that field over a subfield in poly-

nomial time. This is done by means of an algorithm that, as many algorithms

in this paper, depends heavily on techniques from linear algebra. These tech-

niques allow one to deal with problems of an additive nature. Multiplicative

problems, such as recognizing or determining primitive roots, and computing

discrete logarithms [8, §3], are much harder, and no good way is known to solve

them, even if random algorithms are allowed.

There is another, even more fundamental, algorithmic problem concerning

explicit data for finite fields for which currently no polynomial-time algorithm

is known. This is the problem of deciding, given positive integers p and «

with p > 2 and a system of «3 elements (aijk)" , k=l of Z/pZ, whether these

form explicit data for a field of cardinality p". For « = 1 this problem is

equivalent to primality testing: given an integer p > 2, decide whether p is

prime. For this problem no polynomial-time algorithm is known. There is one if

the generalized Riemann hypothesis is assumed, and also if random algorithms

are allowed [8, §5]. Using the techniques of this section, one can show that

primality testing is the only obstacle: there is a polynomial-time algorithm that,

given p, «, (a¡jk) as above, either proves that they do not form explicit data

for a field of cardinality p", or proves that if p is prime they do.

It is convenient to have relative versions of our definitions, in which the base

field is an explicitly given finite field E as above, rather than Fp . Let / be a

positive integer. By explicit data for an /th degree field extension of E we mean

a system of / elements (c¡¡k)¡ ¡ k=x of E = F"p such that E becomes a field

with the ordinary £-vector space structure and the multiplication determined
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by
/

eiej = lsCijkek>
k=\

where e\,e2, ... , e¡ denotes the standard basis of E over E. Denote this

field by F. As above, we can determine the unit element of F, and conse-

quently view £ as a subfield of £ . We shall refer to the explicit data ajjk for

the field £ together with the cj]k as explicit data for the field extension £ c £ .

The notion of explicit data for £-homomorphisms—i.e., field homomorphisms

between extensions of £ that are the identity on £—is defined in the obvious

way.

In the above situation, one can identify £ with Fnp , using the basis

ieie'j)\<i<n i<;</ °f F over *p > and one can readily calculate explicit data

both for £ as a field of cardinality p" and for the inclusion map £ —» £.

Conversely, if explicit data for a field £ of cardinality //" and for a field ho-

momorphism </>:£—►£ are given, then £ can be viewed as a field extension

of £ via dj, and one can calculate explicit data for this field extension. The

precise formulation and proof we leave to the reader.

In the remainder of this paper our language will be less formal, but not

less precise. For example, when we speak of constructing a finite field, or an

extension, or a homomorphism, then we mean constructing explicit data for a

finite field, an extension, or a homomorphism. Likewise, if we say "given a

finite field", when we speak about an algorithm, we mean that the algorithm

is supplied with explicit data for that finite field. Computing an element of a

given finite field means calculating the coordinates of that element on the given

basis of the field over the prime field.

3. Finding a normal basis

If £ C £ is a finite Galois extension of fields, with Galois group G, then

a normal basis of £ over £ is a basis of £ as a vector space over £ of the

form (oot)a€G ■ A well-known theorem asserts that such a basis exists [12, §67].

Theorem (3.1). There exists an algorithm that, given an extension £ c £ of

finite fields, finds a normal basis of F over E intime (log#£)      .

Proof. Let £ c £ be finite fields, and write q = #£ and / = [£:£]. Denote

by a the automorphism of £ that maps each a G £ to a9 . This is a generator

of the Galois group of £ over £.

It is convenient to use the following notation and terminology. It is taken

from [9, §1], to which we refer for background information. For / = £V atXl G

E[X] and a G F we define

f O (Y =  Y,0! ' a'a-
i

This makes the additive group of £ into a module over the polynomial ring
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E[X]. Let a G £ . Then the set {/ G E[X]: foa = 0} is an ideal of E[X]

containing X - 1 , so it is generated by a uniquely determined divisor of X - 1

with leading coefficient 1. Let this divisor be denoted by Ord(a), the Order of

a. From

/|oa = /,oa»/| = f2    mod Ord(a)

it follows that the set E[X] o a = {f o a: f G E[X]} is a vector space over

£ of dimension degOrd(a). Since it is the same as the £-linear span of

{a'a: 0 </'</}, it follows that a gives rise to a normal basis of £ over £ if

and only if its Order has degree /, which occurs if and only if Ord(a) = X -1.

Suppose now that the extension £ C £ is explicitly given. For any a G F

the degree of Ord(a) is the least nonnegative integer k for which a a belongs

to the £-linear span of {o'a: 0 < / < k}, and if a a = ^2¡~0 c¡a'a f°r tnat

value of k , then Ord(a) = X -2~Z,=o ci^' • ^n's description of Ord(a) makes

it clear that there is a polynomial-time algorithm that determines Ord(a) for

any given a G £ .

We now describe an algorithm to find a normal basis of £ over £. Let a

be any element of £ (for example, a = 0). Determine Ord(a) by the method

indicated above. (*) If Ord(a) = X - 1, then a gives rise to a normal

basis, and the algorithm stops. Suppose that Ord(a) ^ X - 1 . Calculate

the element g = (X - l)/Ord(«) of E[X]. As we shall prove below, there

exists ß G £ with goß = a. Determine such an element ß ; this can be

done by means of techniques from linear algebra, since the equation g o ß =

n can be formulated as a system of / linear equations over £. Determine

Ord(/3). If degOrd(/3) > degOrd(a), then replace a by ß and go to (*).

Suppose that degOrd(/J) < degOrd(a). As we shall prove below, there exists

a nonzero element y G F with g o y = 0, and any such y has the property

degOrd(« + 7) > degOrd(a). Determine such an element y by means of linear

algebra, replace a by a + y , determine the Order of the new a , and go to (*).

This completes the description of the algorithm.

We next prove the assertions made in the description of the algorithm. Let a

be any element of £ , and let S be an element that gives rise to a normal basis

of £ over £ . Then there exists / G E[X] with foô = a . From Ord(a)oa = 0

it follows that (Ord(a)f)oa = 0, so Ord(a)/ is divisible by X - 1 . Therefore

/ is divisible by the polynomial g = (X - l)/Ord(a), and with f = gh we

now see that g o (« o S) = a . This proves the assertion on the existence of ß .

Suppose now that Ord(«) ¿ X -1. Then Ord(«)o<5 / 0,and go(Ord(a)oô) =

(X - 1) oô = 0. This proves the assertion on the existence of y. Let next

ß ,y be such that g o ß = a, degOrd(/J) < degOrd(a), y^0,gov = 0.

We prove that degOrd(a + y) > degOrd(a). From g o ß = a it follows that

Ord(«) divides Ord(/3), so the hypothesis degOrd(/J) < degOrd(a) implies

that Ord(a) = Ord(jff). From Ord(# o ß) = Ord(/J) it follows that g is

relatively prime to Ord(«), and the same is then true for the divisor Ord(y)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



336 H. W. LENSTRA. JR.

of g. This implies that Ord(a + y) = Ord(a)Ord(y), and from y ^ 0 it now

follows that degOrd(a + y) > degOrd(a). This proves the assertions made in

the algorithm.

With every replacement of a, the degree of Ord(a) increases by at least 1.

It follows that the algorithm runs in polynomial time. The correctness of the

algorithm is clear. This proves Theorem 3.1.   D

If a gives rise to a normal basis of £ over £, and a is as above, then for

each divisor d of I the element JlLi a' a nas degree d over £. This leads

to an alternative proof of the part of Theorem (1.1) that was proved in §2.

4. Cyclotomic extensions

Let K denote a field and r a prime number that is different from the char-

acteristic of K. In this section we study an rth cyclotomic ring extension of

K . The group of units of a ring R with 1 will be denoted by R*.

Denote by K[Q the ring

KixyrYx'jKix],

and let Ç denote the residue class of X . The dimension of K[C,] over K equals

r - 1 , a basis being given by (C')'~0 , or, alternatively, by (CY,Z] ■ Note that Ç

has order r in the group K[Q*, and that for each integer a not divisible by r

there is a unique ring automorphism pa of K[Ç] that is the identity on K and

for which paC = Ça . The set of all pa\ forms a group, which we denote by A.

Clearly, there is a group isomorphism A = F* that maps pa to a mod r;so A

is cyclic of order r - 1. The group A allows us to recover K from K[Ç], as

follows. For a group G acting on a set S, we write S = {x G S: ax = x for

all a G G).

Proposition (4.1).  We have K[Çf = K.

Proof. The basis (C )t=1 of K[Ç] over K is transitively permuted by A. There-

fore, an element x of K[Ç] belongs to K[Ç]A if and only if all coefficients of x

on that basis are equal. This is the case if and only if x is a AMinear multiple

of the element ¿J|=| Ç , which equals -1. This proves (4.1).   o

Let k be a positive integer, and e an element of a multiplicative group for

which er   = 1 .   If a is an integer, then one easily checks that the element

ea only depends on g and the residue class of a mod r ; in particular, it

does not depend on the choice of k . We write e for this element. Note

that ew{a) = (ew{b))w{c) if a = be mod r. We define the Teichmüller subgroup

TK C K[CT by

TK = {e G K[Q* : e has r-power order, and pae = ew l for all pa G A).

To explain the terminology, we remark that to is often called the Teichmüller

character. Notice that Ç G TR..
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Proposition (4.2). Every finite subgroup of TK is cyclic. In particular, if K is

finite then TK is cyclic.

Proof. Let m be any maximal ideal of K[Ç], and let L = K[Q/m. This is a

field extension of K, so every finite subgroup of L* is cyclic. Therefore, it

suffices to show that the restriction of the natural map <f>: K[Ç] —► L to TK is

injective. Let e G TK, 0(e) = 1. Write e = £,£,-£' > wrm c¡ G K, and let

n = </>(£) ; this is a primitive rth root of unity in L. For each paGA we have

Y.iCjtf1 = (p(pae) = (p(ew[a)) = (p(e)w{a) = 1. This shows that the polynomial

1 - J2¡ cjX' G L[X] vanishes at all primitive rth roots of unity in L, so it is

divisible by ££¿ X' (in L^ > and nence in KW) ■ Therefore, 1 - e = 0,

so e = 1 , as required. This proves (4.2).   D

Let c G K[Q , and let 5 be a positive integer that is a power of r. We denote

by K[C][cl/s] the ring

K[C][Y]/(Ys-c)K[Q[Y],

and by c ' the residue class of Y in this ring. It contains K[Q, and a basis

of /^[£][c ] as a module over K[Q is given by ((c )')*Z¿ . The dimension

of K[Ç][cl/s] over K equals s(r - 1).

Assume, moreover, that c G TK . Then c      is an element of r-power order

of K[Q[cUs]*, so for each a G Z there is a well-defined element (c1/,)w(fl).

Proposition (4.3). 777? action of A on K[Q can in a unique way be extended to

a« aci/o« ci/ A Û5 a group of ring automorphisms of K[C,][c ' ] such that each

paGA maps ci/s to (cl/s)w{a).

Proof. Let aGZ-pZ. The ring homomorphism K[Ç][Y] -» K[Ç][c]/s] that

equals /?a on K[Ç] and maps Y to (c1'í)í0<<3) has Ys-c in its kernel, because

c G TK . Therefore, it induces a ring homomorphism from A"[£][c '*] to itself,

which we again call p . This ring homomorphism is clearly uniquely deter-

mined by its effect on K[Q and c ' . It follows that px is the identity and

that pa'Pa" = pa if a a" = a mod p, so that each pa is an automorphism.

This proves (4.3).   D

Proposition (4.4). Suppose that cx, c2 are elements of TK of the same order.

Then there is a ring isomorphism K[Ç][cx ] —* K[Ç][c2 ] that is the identity on

K[C] and respects the action of A.

Proof. By (4.2), the elements c,, c2 generate the same subgroup of TK . Let

c, = c2, with gcd(y, r) = 1. As in the proof of (4.3), one constructs a ring

homomorphism (/>: K[i][c\ls] -> A:[C][c2/5] that is the identity on K[Ç] and

sends c\/s to (c2s)J. Checking the effect on the basis elements (c\/s)' of

^[Cltfi'^] over K[C], one sees that this is an isomorphism. Let pa G A. To

prove that <p(p x) = pa<t>(x) for all x G K[Ç][c\/s], one remarks that this is
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1     / r. 1     /ç

obvious for x G K[Q and for x = c, , and that these generate 7\"[Ç][cy ] as

a ring. This proves (4.4).   D

The ring K[Ç] studied in this section need not be a field. It is one if and

only if £^~0 X' is irreducible in K[X]. If K is finite, this is the case if and

only if #K is a primitive root modulo r.

5. Prime-degree extensions

In this section we let £ be a finite field, q its cardinality, and r a prime

number different from the characteristic of £ . By m we denote the order of

(q mod r) in the group F*, and we let the positive integers t, u be such that

q'" - 1 = ur and u ^ 0 mod r. The notation R*, TE , £[£][c''r] is explained

in the preceding section.

Theorem (5.1). The group TE is cyclic of order r , and if c generates TE , then

E[C][c    ]A is a field extension of E of degree r.

This theorem is proved at the end of this section. It tells us how to obtain a

field extension of degree r from a generator of the Teichmüller group TE . Our

next result tells us, conversely, how to obtain a generator of TE from a field

extension of degree r.

Let £ be a field extension of £ of degree r, and let a be an element of £

that gives rise to a normal basis of £ over £ (see §3). We define ß, y G F[Ç]

by

/? = £ív",    y=rfip;\rr').
1=0 a=\

1+1 I

Below we shall see that ßur = 1 , so the expression ar appearing in the

definition of y may be taken modulo r'+  .

Notice that we can view £[Ç] as a subring of £[C].

Theorem (5.2). The element c = y   belongs to E[Q*, and it generates  TE.
i i r

Moreover, there is a ring isomorphism £[Ç][c ] = £[C] that is the identity

on £[C], maps c to y, and respects the action of A. It induces a field

isomorphism £[C][c1'j   = £.

Proof. The field £ is Galois over £ , and its Galois group is generated by the

automorphism of £ that sends every x G £ to xq. Denote by x the mth

power of this automorphism. This is still a generator of the Galois group of £

over £ , because gcd(w , r) = 1. We extend x to a ring automorphism of £[£]

by xÇ = C • For x g F[Ç] we have

(5.3) xx = x o x G £[£]-

To see this, write x = Yl'iZo c/'=' > w'tn c¡ G F. Then tx = x if and only if

tCj = c  for each i, if and only if cj G E for each i, if and only if x G £[(].
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For every x G £[Ç] we have

in

(5.4) xx = xq  .

For x G £ and for x = Ç this is clear, and these generate £[(] as a ring.

We can rewrite the definition of ß as ß = Y?,Io C'T'a • From a straightfor-

ward computation we find that

(5.5) tß = Clß.

We show that

(5.6) ßeF[Q*.

Since £[C] is finite, it suffices to prove that ß is not a zero divisor. Because

(t q)/=0 is a basis of £ over £, it is also a basis of £[£] over E[Q, and

therefore xß ^ 0 for all x G £[C], x ^ 0 . To extend this to all x G £[£], x ^

0, it suffices to prove that every ideal of £[£], in particular the ideal {x G

£[£]: xß = 0}, is generated by an element of £[(] ; or, equivalently, that every

irreducible factor of Y^,Zo %' m E[X] remains irreducible in F[X]. This is

obvious, because the degree of any such irreducible factor is relatively prime to

[£:£]. This proves (5.6).

From (5.5), (5.4), and (5.6) it follows that ß" "' = ("' , so the element
u r -\ r'f[

ô = ß satisfies ô = ( and S = 1 . Using the notation introduced in §4,

we can therefore rewrite the definition of y as

7 = Ek~V(a))-
a=i

Using that pZ\C(a)) = C, one finds that

(5.7) / = C.

From this one sees that y has order r'+  , and, using (5.4), that

(5.8) xy = Cy-

An easy computation, which is the multiplicative analogue of the argument that

proves (5.5). shows that

pby = y        for all pb G A,

so that y g Tf .  Hence, c = y   also belongs to TF .  It has order r .  From

(xc)/c = cq = c"' = 1 and (5.3) it follows that c G £[(], and therefore

c G TE . The order of any element of TE divides q'" - 1 , by (5.3), and since

it is also a power of r, it actually divides r . With (4.2) it follows that c is a

generator of TE . This proves the first two assertions of (5.2).

To prove the remaining assertions, we consider the ring homomorphism

£[£][>1 -» £[C] that is the identity on £[£] and sends  Y to y.   Clearly,
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Yr - c is in the kernel of this map. We prove that it generates the kernel. For

this it suffices to show that ¿Zi=0 d¡y , with dt G E[Ç], vanishes only if all dt

are zero. Applying all powers of t to the relation JZi=0 dty = 0, and using

(5.8), we find that

i=0

for all integers j (mod r). Now let k G {0, 1, ... , r — 1}. Multiplying the

jth relation by Ç~ ; and summing over j , we then see that rdky = 0. Since

ry    is a unit, this implies that dk = 0, as required.

It follows that an injective ring homomorphism y. £[C][c1//r] —► £[£] is

induced. Since both rings are r(r - l)-dimensional over £, the map y/ is

surjective. This proves the existence of the first ring isomorphism in (5.2).

Let pa G A. For all x G £[Ç] one trivially has y/(pax) = pay(x), and the

same equality holds for x = c'r because pa raises both c 'r and y to the

power œ(a).

This proves that y/ respects the action of A. Passing to the A-invariants and

applying (4.1), one concludes that an isomorphism £[£][c''r]A = £ is induced.

This proves (5.2).   □

The following lemma will be needed in the next section.

Lemma (5.9). Let F be afield extension of E of degree r, and let e G TF be

any element satisfying e =Ç. Then all conclusions of (5.2), with y replaced

by s, are valid.
t

Indeed, all we used about y was that y   = Ç and y gTf .

Proof of (5 A). Since £ is a finite field, we can choose a field extension £ of £

of degree r. Applying Theorem (5.2), we find a generator c for TE , and in the

proof we have seen that c has order r . Therefore, TE is cyclic of order r .

By (4.4), the ring £[Ç][c1/r]A does not depend on the choice of the generator c

of TE , up to isomorphism, and by the last assertion of (5.2) it is a field. This

proves (5.1).   □

6. Prime-power-degree extensions

Let £, q, r, m, t be as in the previous section, let « be a positive integer,

and let 5 = r . In this section we shall see that the results from the previous

section carry over to extensions of degree 5, provided that we make the as-

sumption 5 = 2 or r > 2 ; thus only the case r = 2,s>4,c, = 3 mod 4 is

excluded.

Theorem (6.1). Suppose that s = 2 or r' > 2, and let c be a generator of TE .

Then £[C][c1/i]A is a field extension of E of degree s.

The proof is given at the end of this section.
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Let £ be a field extension of £ of degree s, and denote by £' the unique

subfield of £ with [F : E'] = r. Let a be an element of £ that gives rise to a

normal basis of £ over E1 (see §3), and let ß, y G £[Ç] be as in the previous

section, but with £ replaced by £ ; so

ß = Y^q"m",      y = riiP-\(ßu'f{a)),

í=0 a=\

where u   is the largest divisor of #£'* that is not divisible by r.

Theorem (6.2). Suppose that s = 2 or r > 2. Then the element c = ys

belongs to £[C]*. and it generates TE . Moreover, there is a ring isomorphism

E[Q[cl/s] — F[C] that is the identity on £[£], maps c]/s to y, and respects the

action of A. It induces afield isomorphism E[Q[cl/s]A = F .

Proof. By (5.2) we may assume that 5 is not prime. Then our hypothesis

implies that r > 2 . We consider the chain of fields

£ = £0 C £, C ■ • ■ C Eh_, = £' c Eh = F,

in which each field has degree r over the preceding one. Let q¡ denote the

cardinality of E¡. From qj+x = q\ it follows that all q¡ are congruent modulo

r, so they all have the same multiplicative order m modulo r. Also, from

r ± 2 it follows that the number of factors r in q'" - 1 equals t + i, for

0 < i < « . Applying (5.1) to each E¡, we see that the group TE   is cyclic of

order r'+l, so in the sequence of groups

TE=TE   CTE   C       ■ CTE       = TE' C TE   = TF

each group is of index  r in the next one.   Applying (5.2) to the extension

£' C £, we find that / is a generator of T£,, so for each i the element /

generates TV    . In particular, the element c = / generates TF .
cii-i c

From (5.9), with e = y   , it now follows that each £/,_,[£] is, as a ring,

generated by EhiX[Ç] and y . Combining this for all i, one concludes that

£[£] is, as a ring, generated by £[£] and y. Therefore, the ring homomor-

phism £[C][F] —► £[C] that is the identity on £[£] and sends F to y is

surjective.   The element  Ys - c is in the kernel, so a surjective ring homo-
1 Is

morphism £[C][i" ] —> £[£] is induced. Comparing dimensions over £, one

concludes that it is an isomorphism. As in the proof of (5.2), one shows that

it respects the A-action and induces an isomorphism £[C][c ]A — F. This

proves (6.2).   a

One derives (6.1) from (6.2) in exactly the same way as (5.1) was derived

from (5.2).
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7. Artin-Schreier extensions

In this section we deal with extensions of degree equal to the characteristic

of the field, using Artin-Schreier theory [6, Chapter VIII, Theorem 6.4]. The

following result already appears in [1].

Theorem (7.1). There is an algorithm that, given a finite field E of characteristic

p, constructs a pth-degree field extension F of E in time (plog#£) (   .

Proof. Let p: E —> £ be the F -linear map sending each x G £ to xp - x.

Since p maps F to 0, it is not bijective, so there ex-'sts a G E that is not

in the image of p. Also, such an a can be found by applying linear algebra

over F . Let / G E[X] be the polynomial Xp - X - a . We claim that / is

irreducible, so that £ = E[X]/fE[X] is an explicitly given extension field of

£ of degree p .

To prove the claim, let a be a zero of / in an algebraic closure of £ . Then

all zeros of / are the elements a + i, with i G F_. Any two zeros of / generate

the same field, so they have the same degree over £. Therefore, all irreducible

factors of / in E[X] have the same degree. Since / is of prime degree p , this

implies that either f is irreducible or splits into p linear factors. The latter

possibility is excluded because a was chosen such that / has no zero in £.

This proves Theorem (7.1).    D

Theorem (7.2). There is an algorithm that, given two field extensions F{, £2 of

degree p of a finite field E of characteristic p, constructs an E-isomorphism

Fx ->F2 intime (log#£,)0(1).

One way to prove the theorem is to use the reduction to the problem of fac-

toring polynomials in one variable that was mentioned in the introduction. This

gives rise to a polynomial-time algorithm because the characteristic is bounded

by the degree. I present an alternative solution, which is more in the spirit of

the other arguments in this paper.

Proof. Let £,, £2 be two explicitly given extensions of £ of degree p, and

let a, F be as in the proof of (7.1). Since we know that the fields £ and £,

are £-isomorphic, the element a must be in the image of the map p, : £, —»

£, sending each x to xp - x . By means of linear algebra over F one can

find, in polynomial time, an element ax G Fx with ap - a, = a. An explicit

£-isomorphism £ —> £, is now obtained by sending X' mod / to a\, for

0 < i < p . Likewise, one constructs an £-isomorphism £ —» £2. Combining

these isomorphisms, one obtains the desired £-isomorphism £, —► £2 • This

proves (7.2).   □

8. Taking roots

This section is devoted to the case that was excluded in Theorems (6.1) and

(6.2). Shoup [11] has a very elegant way to deal with this case. Our approach

is less efficient, but it is of interest in itself because it shows that linear algebra
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can, in certain situations, be used to take roots in finite fields in polynomial

time.

If £ is a finite field of odd cardinality q, then an element a G £ has a

square root in £ if and only if a{q+ ' = a . It follows that in the case q = 3

mod 4 every square a G E has a{q+ ' as one of its square roots. Hence there

is a polynomial-time algorithm to take square roots in finite fields of which the

cardinality is 3 mod 4. The following theorem implies, more generally, that

there is a polynomial-time algorithm to take square roots in finite fields whose

characteristic is 3 mod 4.

Theorem (8.1). There is an algorithm that, given a finite field E of characteristic

p, an element a G £ and a positive integer e satisfying

p  =1   mode,    gcd(e, (p  - l)/e) = 1   for some positive integer h,

decides whether there exists b G E with be = a, and constructs such an element

b if it exists, intime (\og(e#E)) (1).

Proof. Let q = #£. We may clearly restrict ourselves to the case that a ^ 0.

Let it first be assumed that an integer « as in the statement of the theorem

is known, with p   < q. Let c = a{p ~ "e.  If a is an eth power, then c is

a (p - 1 )th power, so there exists a nonzero element x such that x = ex.

This equation is F -linear in x, so by means of linear algebra we can decide

whether it has a nonzero solution, and find one if it exists.

If there is no such x, then a is not an eth power. Next suppose that x is

nonzero and satisfies the equation. Then

xp"-]=aip"-i)/e.

Using the extended Euclidean algorithm, one can find integers u, v with ue +

v(p  - l)/e = 1 . The element b = aux"    ~       then satisfies

, e ue   n(p'-l) ue   v(p -l)/e
b  = a  x = a   a '  = a,

as required.

To remove the assumption about «, one replaces e by e = gcd(e, q - 1)

and h  by the multiplicative order «'  of p  modulo e .   From q = p" =

1 mod e   it follows that h' divides «, so indeed p    < q.   We claim that

gcd(e', (ph - \)/e) = 1. To prove this, note that «' divides « , so (p   - \)/e

divides both (e/e)-(p -\)/e and (q-\)/e . From gcd(e/e', (q-\)/e')= 1

it follows that (p1 -\)/e divides (p - l)/e, which iscoprime to e and hence

to e . This establishes the claim. If a is an eth power, then it is clearly an

e\\\ power. Conversely, if a = be , then with e = ue + v'(q - 1) we obtain

a = (b   ) .

This proves (8.1).   D
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Corollary (8.2). There is an algorithm that, given a finite field E of characteristic

p = 3 mod 4 and an element a G E, decides whether there exists b G E with

b  = a, and constructs such an element b if it exists, in time (log#£) (1).

Proof. Take e = 2, h = 1 in (8.1). This proves (8.2).   D

Corollary (8.3). There is an algorithm that, given a finite field E of characteristic

p = 3 mod 4, finds an element of the multiplicative group E* of E of which

the order is the largest power of 2 that divides #£*, in time (log#£) (1).

Proof. Starting from a = -1 , repeat taking square roots until this is no longer

possible. This clearly yields an element as desired. The number of iterations

equals the number of factors 2 in #£*, which is less than (log#£)/log2 . This

proves (8.3).   D

Corollary (8.4). There is an algorithm that, given a finite field E of characteristic

p = 3 mod 4, constructs an extension field of E of degree 2 in time (log#£) (1).

Proof. If z is the element constructed by the algorithm of Corollary (8.3), then

E[X]/(X -z)E[X] is a field extension of £ of degree 2. This proves (8.4).    D

The following explicit formula is of interest. Let £ be a finite field of cardi-

nality q , where q = 3 mod 4. Then £(i), with i" = -1 , is a quadratic exten-

sion of £. Let the map /: £(i) -» £(i) be defined by f(x) = (1 + x)(9"1)/2.

Then for every integer m > 2 for which 2m divides #£(i)*, the element

fm~ (i) has multiplicative order 2m . This follows by induction on m from

the fact that f(x)2 = x"1 for all x with xq+] = 1 .

The final result of this section solves, in a theoretical sense, a problem that

comes up in primality testing [3, (11.6)(a); 2, §5].

Corollary (8.5). There is an algorithm that, given a positive integer p that is 3

mod 4, finds an element u G Z/pZ with the property that, if p is prime, the

Legendresymbol ((u  +4)/p) equals -l, intime (log/?) (I).

Proof. Assume first that p is prime. Using the above formula, one can find

an element z of Fp(\)* of order equal to the largest power of two dividing

p" — 1 . We claim that u = z — z~ has the required property. To see this, notice

that zp+ has order 2, so is equal to -1 . Hence the irreducible polynomial

(X - z)(X - zp) of z over F   equals X~ - uX - 1 . Since the polynomial is

irreducible, its discriminant u  + 4 is not a square in F .

For general p , the computations leading to the element u can be carried out

in (Z/pZ)[Y]/(Y2 + 1) instead of Fp(i). This proves (8.5).    □

9. Proofs of the theorems

The following theorem clearly implies Theorem (1.1).

Theorem (9.1). There exists an algorithm that, given a finite field E of charac-

teristic p, a positive integer « , and any of (a), (b), (c), constructs the two others
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in time (n log #£)      :

(a) explicit data for a field extension of E of degree «;

(b) an irreducible polynomial in E[X] of degree «;

(c) for each prime number r that divides « but that does not divide the

degree [E : F ], an irreducible polynomial in E[X] of degree r.

The proof that each of (a) and (b) suffices to construct the two others is the

same as the proof for the case that the base field is F (see §§1 and 2). In this

section we prove that (c) can be used to construct (a) and hence (b). We need

the following lemma.

Lemma (9.2). Given a finite field E, a prime number r, and a field extension

F of E of degree r, one can construct a field extension of F of degree r in

time (log#£)°(1).

Proof. Let p, q denote the characteristic and the cardinality of £, respectively.

First suppose that r / p, and let the case r = 2, q = 3 mod 4 be excluded.

Using (3.1), we can construct an element a G F that gives rise to a normal

basis of £ over £. Given a, we can calculate the elements ß, y of £[Ç]

that are defined in §5. By (5.2), the element c = y is a generator of TE , and

there is a ring isomorphism £[C][c ] — £[C] that induces an isomorphism

^[C][c ] — F. Also, the ring £' = £[Ç][c''r ]A is a field extension of £ of

degree r , by (6.1). It is clear that explicit data for the field extension £ c £'

are readily calculated from the definition of £'. Since we can view £[Ç][cl/r]
I      /_- 1      ly 1      I y~ y

as a subring of £[i][c ], by identifying c ' with (c ' ) , we can identify

£ with a subfield of £'. The degree of £ over £' equals r, as required.

In the cases that we excluded, the subfield £ of £ is not even needed. If

r = p, then it suffices to apply (7.1) to £ instead of £. If r = 2 and q = 3

mod 4, then p = 3 mod 4, so we may apply (8.4). This proves (9.2).   o

Proof of (9A). Let £ and « be given, as well as an irreducible polynomial of

degree r in E[X], for every prime number r that divides « but that does

not divide [£ : F ]. We construct an «th degree extension of £ by induction

on the number of primes dividing « , counting multiplicities. We may clearly

assume that « > 1 . Let r be a prime number dividing « , and suppose that a

field extension £' of £ of degree n/r has been constructed. It will suffice to

construct an rth-degree field extension of £'. We distinguish two cases.

In the first case, r divides the degree [£' : F/;]. Then £' has a subfield £'

with [£' : E'] = r, and £' can be determined by the methods of §2. Applying

(9.2) to the extension É c £', we see that we can construct a field extension

of F1 of degree r, as required.

In the second case, r does not divide [£' : Fp]. Then in particular, /• does

not divide [£ : F ], so by hypothesis an irreducible polynomial / G E[X] is

given.  Because [£' : £] is not divisible by r either, / is still irreducible in
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F'[X]. Therefore, £ = F'[X]/fF'[X] is the required field extension of £' of

degree r.

This proves Theorem (9.1).   D

The following theorem clearly implies (1.2).

Theorem (9.3). There is an algorithm that, given a finite field E, a positive

integer «, and two field extensions Fx, F2 of E of degree n , constructs an

E-isomorphism £, —> £2 intime (log#£j) (1).

We first deal with the case that « is a prime number.

Lemma (9.4). Given a finite field E, a prime number r, and two field extensions

£,, £2 of E of degree r, one can construct an E-isomorphism £, —> £2 in time

(log#F,)0(1).

Proof. By Theorem (7.2) we may assume that r is different from the character-

istic of £. Applying Theorem (5.2), we can, as in the proof of (9.2), construct

generators c,, c2 of TE and £-isomorphisms £[i][cy ] = £(, for i = 1,2.

Thus, it suffices to construct a ring isomorphism £[Ç][c,1/f] = £[C][c2/r] that

is the identity on £ and respects the action of A. Inspecting the proof of

Proposition (4.4), one sees that this can be done if an integer j is known with

cx=cJ2.

Finding j is done by the following well-known iterative procedure. Let / be

such that HTE = r . First put j = 1.  (*) Determine the smallest nonnegative

integer k for which (cx/c2)r  = 1 . If k = 0, then one has cx = c2, and we are
k-\

done. If k > 0, then (cx/cJ2)r is an element of order r of TE , so there is a

unique integer I e {1,2, ... , r — 1} such that

k-] ,1-1

(cx/c2)       =c2     .

This integer / can be found by a direct search. Now replace j by j + lr'~ ,

and start again at (*). To justify this algorithm, one remarks that the value of

k is initially at most /, and that it decreases by at least 1 in every iteration step.
(-i

The search among the powers of c2     is simplified by the fact that they coincide
/-i /-i

with the powers of Ç, because c2     = £ (see (5.7)). Since also c\     = Ç, the

initial value of k is actually at most t - 1 .

This proves (9.4).   D

Proof of (9.3). Let £ be a finite field, « a positive integer, and £,, £2 two

explicitly given field extensions of £ of degree « . To find an £-isomorphism

£, —► £2, one first finds prime numbers r(  such that « = r, r2 ■ ■ ■ rm , which

an easily be do

chains of fields

can easily be done in time n      . Next, one determines, by the methods of §2,

£ = £0c£, c---c£    , C£=£,
Jm-\ m 1

71        r p'   — F>0 ^ ^1 v _ ^m_x ^ cm — r2 ,E = E' c E\ c • ■ • c £' _. C £'  = £,,
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such that [£. : EiX] = [E\ : £,'_,] = ri for 0 < / < m. Using (9.4), one

constructs successively £-isomorphisms £, —> E[, £2 —> £2, ... , Em —► E'm .

This proves Theorem (9.3).   □

The algorithms given in the proofs of (9.1) and (9.3) can in many cases be

made more efficient by working with field extensions of which the degree is a

prime power rather than a prime number.
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