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ABSTRACT. We provide an elementary introduction to topological quantum computation based on the Jones representation
of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones represen-
tation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of
the Jones polynomial and explicit localizations of braid group representations.

1. INTRODUCTION

Topological quantum computation (TQC) is based on the storage and manipulation of information in the represen-
tation spaces of the braid group, which consist of quantum states of certain topological phases of matter [22]. The
most important unitary braid group representations for TQC are the Jones representations [9], which are part of the
Temperley-Lieb-Jones (TLJ) theories. TLJ theories are the most ubiquitous examples of unitary modular categories
(UMCs). The Jones-Wenzl projectors, or idempotents, in TLJ theories can be used to model anyons, which are be-
lieved to exist in fractional quantum Hall liquids. Hence the proper mathematical language to discuss TQC is UMC
theory and the associated topological quantum field theory (TQFT). Both UMC and TQFT are highly technical sub-
jects. However, the representations of the braid group from UMCs or TQFTs are a more accessible point of entry to
the subject. These notes provide an elementary introduction to some representations of the braid group coming from
UMCs and TQFTs, and their application to topological quantum computation. We will use the braid group B∞ to
mean the direct limit of all n-strand braid groups Bn for all n≥ 1. Therefore, a representation of the braid group B∞ is
a compatible sequence of representations of Bn.

Our focus is on the representations of the braid group discovered by Jones in the study of von Neumann algebras [9].
Jones representations are unitary, which is important for our application to quantum computing. These representations
also have a hidden locality and generically dense images. Unitarity, locality, and density are important ingredients for
the two main theorems (the colloquial terms will be made precise later) that we will present:

Theorem 1.1. The Jones representation of the braid group at q = e±2πi/r, r 6= 1,2,3,4,6, can be used to construct a
universal quantum computer.

Theorem 1.2. The Jones polynomial of oriented links at q = e±2πi/r can be approximated by a quantum computer
efficiently for any integer r ≥ 1.

While unitarity and density are easy to understand mathematically, locality is not formally defined in our notes as
there are several interpretations (one of which is discussed in Section 6). Essentially, a local representation of the braid
group is one coming from a local TQFT, whose locality is encoded in the gluing formula. A first approximation of
locality would mean a sequence of representations of Bn with a compatible Bratteli diagram of branching rules.

We motivate our study of the Jones representation and its quantum applications with the Burau representation,
which belongs to the classical world. The Burau representation leads to the link invariant called the Alexander poly-
nomial, which can be computed in polynomial time on a classical computer. On the other hand, the link invariant
corresponding to the Jones representation, the Jones polynomial, is #P-hard to compute on a classical computer, but
can be approximated by a quantum computer in polynomial time. This approximation of quantum invariants by a
quantum computer is realized by the amplitudes of the physical processes of quasi-particles called anyons, whose
worldlines include braids.

The contents of these notes are as follows: In section 2, we cover the Burau representation and Alexander poly-
nomial. In section 3, we discuss the Jones representation and Jones polynomial. Section 4 is on anyons and anyonic
quantum computation. In section 5, we explain the approximation of the Jones polynomial. Section 6 is on an explicit
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localization of braid group representations. While full details are not included, our presentation is more or less com-
plete with the exception of Thm. 4.22, which is important for addressing the leakage issue. An elementary inductive
argument for Thm. 4.22 is possible and we will leave it to interested readers.

2. BURAU REPRESENTATION AND ALEXANDER POLYNOMIAL

2.1. The braid group. The n-strand braid group Bn is given by the presentation

Bn =
〈

σ1,σ2, . . . ,σn−1

∣∣∣ σiσ j = σ jσi for |i− j| ≥ 2,σiσi+1σi = σi+1σiσi+1, i = 1,2, . . . ,n−1
〉
.

The first type of relation is known as far commutativity and the second is the braid relation. Using the braid relation,
one can check that all of the generators of the n-strand braid group lie in the same conjugacy class. Therefore, each
n-strand braid group Bn is generated by a single conjugacy class when n≥ 3.

The names of the relations are inspired by the geometric presentation of the braid group, in which we picture braids
on n “strands”, and the braid generators σi correspond to crossing the ith strand over the i+ 1 strand. Multiplication
bb′ of two braid diagrams b and b′ is performed by stacking b′ on top of b and interpreting the result as a new braid
diagram.

For example, B3 = 〈σ1,σ2 | σ1σ2σ1 = σ2σ1σ2〉, where σ1 braids the first two strands and σ2 the latter two.

σ1 = σ2 =

In these notes, we use the “right-handed convention” when drawing braid diagrams, so that the overstrand goes
from bottom left to top right. As a result,

σ
−1
1 =

Swapping the definitions of σ1 and σ
−1
1 would give the “left-handed convention".

In the picture presentation, far commutativity expresses the fact that when nonoverlapping sets of strands are
braided, the result is independent of the order in which the strands were braided. The braid relation is given by

=

.

The braid relation is called the Yang-Baxter equation by some authors, but we will reserve use of this phrase
because, as will be explained shortly, there is a subtle difference between the two.

Another useful perspective is to identify Bn with the motion group (fundamental group of configuration space) of
n points in the disk D2. Then the braid relation says: given three distinct points on a line in the disk and we exchange
the first and third while keeping the middle one stationary, then the braid trajectories are the same if the first and third
points cross to the left or right of the middle point.

The braid group, denoted by B∞, is formed by taking the direct limit of the n-strand braid groups with respect to
the inclusion maps Bn ↪→Bn+1 sending σi→ σi. That is, we identify a braid word in Bn with the same braid word in
Bn+1. In pictures, this inclusion map Bn→Bn+1 adds a single strand after the braid σ .

2.2. Representations of the Braid Group. For applications of braid group representations to quantum computing,
the braid group representations should be unitary and local. Moreover, for reasons that are not a priori clear, since
the images of the braid generators σi will eventually be interpreted as quantum gates manipulating quantum bits, they
should be of finite order and have algebraic matrix entries.

Recall that a matrix U is unitary if U†U = UU† = I. We denote by U(r) the group of r× r unitary matrices. A
precise definition of locality requires interpreting the images of elements of the braid group as quantum gates, and is
relegated to section 4 where quantum computation is discussed.

One important way to obtain representations of the braid group is to find solutions to the Yang-Baxter equation.
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2.2.1. The Yang-Baxter Equation and R-matrix. Let V be a finite dimensional complex vector space with a specified
basis, and let R : V ⊗V →V ⊗V be an invertible solution to the Yang-Baxter equation (YBE):

(R⊗ I)(I⊗R)(R⊗ I) = (I⊗R)(R⊗ I)(I⊗R)
where I is the identity transformation of V . We call such a solution to the YBE an R-matrix (as opposed to R-operator,
since we have a basis with which to work).

Any R-matrix gives rise to a (local) representation of the braid group via the identification

σi→ · · · R · · ·

For example, in the 3-strand braid group, we can take

σ1→ R = R⊗ idV

where R⊗ idV is a map from V ⊗V ⊗V to itself.
Representations of the braid group arising from R-matrices are always local, but rarely unitary. There is a natural

tension between these two properties that make finding such a representation difficult, which is illustrated by the
following example.

2.2.2. Locality versus unitarity. The following R-matrix is a 4× 4 solution to the Yang-Baxter equation for V = C2

with the standard basis, and as such is local.

R =


a 0 0 0
0 0 ā 0
0 ā a− ā3 0
0 0 0 a


However, if R were to be unitary, its columns would have to be orthonormal. In particular, ‖a‖= 1 and

〈(0,0, ā,0)T ,(0, ā,a− ā3,0)〉= a(a− ā3) = 0.

Since ā = a−1, unitarity would force a4 = 1. But then the only possibilities for a are ±1 or ±i, and one can check that
indeed each of these choices results in R being a unitary matrix.

It is in general difficult to find nontrivial solutions to the Yang-Baxter equation. Historically, the theory of quantum
groups was developed to address this problem, but solutions that arise from the theory of quantum groups are rarely
unitary. The state of the art is that for dimV = 1 and dimV = 2, all unitary solutions are known. While a classification
for larger dimensions is unknown, there do exist nice examples of 4×4 and 9×9 unitary solutions [22].

2.3. The Burau representation of the braid group. There are two versions of the Burau representation: the unre-
duced representation, which denoted by ρ̃ , and the reduced representation, for which we reserve the notation ρ .

2.3.1. The unreduced Burau representation. There is a nice probabilistic interpretation of the unreduced Burau rep-
resentation that is due to Jones, which we will use as an introduction to the subject [10]. We start by defining the
representation for positive braids, braids for which all crossings are right-handed. More precisely, σ is positive if it
can be written σ = σ

sk
ik
· · ·σ si

i1
where si > 0 for each i.

Imagine the braid diagram as a braided bowling alley with n lanes, where lanes cross over and under one another
and at every overcrossing there is a trap door that will open with probability 1− t when a ball rolls over it. Of course,
due to gravity there is zero probability of a ball on a lower lane jumping up onto a lane crossing over it. Then starting
from the bottom of the braid and bowling down lane i, it ends up in lane j with some probability, which we can identify
as the i jth entry of a matrix.

More precisely, for positive braids the unreduced Burau representation ρ̃ : Bn→ GLn(Z[t, t−1]) can be defined by
assigning each σ ∈ Bn to the matrix ρ̃(σ) given by

ρ̃(σ)i j = ∑
paths p from i to j

w(p),
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where w(p) is the probability corresponding to the path p, which is always of the form tk(1− t)l for some nonneg-
ative integers k and l.

For a concrete example, take the following braid, call it σ , in B4.

1 2 3 4

1 2 3 4

Note that the labels mark the relative position of the strands, as opposed to the strands themselves. The matrix
representing σ in GL4(Z[t, t−1]) is then given by

ρ̃(σ) =


1− t t(1− t) t2(1− t) t3

1 0 0 0
0 1 0 0
0 0 1 0


How to represent left-handed crossings is then already determined, for once we define the representation of a right

handed crossing

ρ̃( )=

(
1− t t

1 0

)
,

using that σ1σ
−1
1 = 1 and that ρ̃ is a group homomorphism it follows that ρ̃(σ1)ρ̃(σ

−1
1 ) = I. Therefore the repre-

sentation of the σ
−1
1 must be given by the inverse of ρ̃(σ1),

ρ̃( ) =

(
0 1
t̄ 1− t̄

)
,

where t̄ = 1/t. Thus left-handed crossings are assigned a factor of t̄ for an overcrossing and 1− t̄ for an undercrossing.
The generators σi of Bn and their inverses can be represented by extending the construction in the natural way. Then
the representation of an arbitrary braid b = σ

sk
ik
· · ·σ s1

i1
is given by multiplying the representations of the constituent σik

in the braid word. This defines the unreduced Burau representation of the braid group.
As a fun example we introduce the following braid b = σ

−1
3 σ2

2 σ
−1
3 σ

−1
1 , once drawn by Gauss (see e.g. [E, Figure

2]).

The unreduced Burau representation of the Gauss braid is given by
0 1 0 0

tt̄ +(1− t)2t̄ t(1− t̄)+(1− t)2(1− t̄) 0 (1− t)t
0 0 t̄ (1− t̄)

t̄2(1− t) t̄(1− t)(1− t̄) (1− t̄)t̄ (1− t̄)2 + t̄t

 ,

which has been left unsimplified to make the individual contributions from paths more transparent.
The unreduced Burau representation of a braid b ∈ Bn has several properties worth mentioning.

4



(1) When t = 1, ρ̃(b) is a permutation matrix. This allows one to interpret ρ̃(b) as a deformation of a permutation
matrix.

(2) The representation ρ̃ is reducible.
(3) There exists an invariant row vector (row eigenvector) of ρ̃(b), independent of b ∈ Bn.

The first property is clear from the construction of the unreduced Burau representation. The second and third properties
are closed related, and we prove them below.

One of the nice aspects of the probabilistic interpretation of the Burau representation is that it is an immediate
consequence of the definition that the entries in each row of a matrix ρ̃(b) should sum to one, since probability must
be conserved. Put another way,

ρ̃(σ)


1
1
...
1

=


1
1
...
1

 .

That is, there is a one-dimensional subspace which is invariant under ρ̃(σ), for any σ ∈Bn. Therefore the (unreduced)
Burau representation is reducible, and that we can obtain another representation by restricting to the orthogonal sub-
space span{(1,1, . . . ,1)}⊥. This is one way to define the reduced Burau representation.

Since the determinant of a matrix is equal to the determinant of its transpose, if det(I− ρ̃(b)) = 0 for all b ∈ Bn,
then

det((I− ρ̃(b))T ) = det(I− ρ̃(b)T ) = 0

for all b∈ Bn. In other words, since ρ̃(b) has an eigenvector ρ̃(b)T has an eigenvector v with eigenvalue 1, ρ̃(b)T v = v
for some v 6= 0. Taking the transpose of this matrix equation, we find

vT
ρ̃(b) = vT .

This shows that ρ̃(b) has an invariant row vector vT , proving the third property.
In fact, this row vector takes the form

vT = (1, t, t2, . . . , tn−1).

Observing that

(1, . . . ,1, t i, t i+1,1 . . . ,1)


Ii−1 0 0

0
(

1− t t
1 0

)
0

0 0 In−i−1

= (1, . . . ,1, t i− t i+1 + t i+1, t i+1,1, . . . ,1)

it follows that vT defines an invariant row vector for the representations of the braid group generators ρ̃(σi), and hence
for all ρ̃(b), b ∈ Bn.

2.3.2. The reduced Burau representation. An alternative approach to defining the reduced Burau representation yields
an explicit basis.

We explicitly find a basis for an invariant subspace of ρ̃(Bn) by looking for eigenvalues and eigenvectors of ρ̃(σi).
We have seen already that (1,1, . . . ,1)T is an eigenvector with eigenvalue 1. One can check that another eigenvector
is given by (0, . . . ,0, −t︸︷︷︸

i

, 1︸︷︷︸
i+1

,0 . . . ,0)T , corresponding to eigenvalue −t.

Proposition 2.1. Let vi = (0, . . . ,0, −t︸︷︷︸
i

, 1︸︷︷︸
i+1

,0 . . . ,0)T . Then span{v1, . . . ,vn−1} is an invariant subspace of ρ̃(b) for

all b ∈ Bn.
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Proof. The image of each vi under ρ̃(b) can be written as a linear combination of the v j.

ρ̃(σi)vi =


Ii−1 0 0

0
(

1− t t
1 0

)
0

0 0 In−i−1

=



0
...
0
t2

−t
0
...
0


=−tvi

Similar calculations show
ρ̃(σi)vi−1 = vi−1 + vi

ρ̃(σi)vi+1 =−tvi + vi+1

and
ρ̃(σi)v j = v j

when | j− i| ≥ 2.
This verifies that the subspace spanned by the vi is invariant, leading to the following definition.

Definition 2.2. The reduced Burau representation ρ : Bn→ GLn−1(Z[t, t−1]) is given by ρ(b) = ρ̃(b)
∣∣∣
span{vi}

.

2.3.3. Unitary Burau representations. Keeping in mind that we are looking for unitary representations of the braid
group, it is natural to ask for which t ∈ C∗ the reduced Burau representation ρ : Bn→ GLn−1(Z[t, t−1]) is unitary.

One can check that the matrix representation corresponding to a braid group generator fails to be unitary for
any choice of t. For example, consider the braid with corresponding (unreduced) Burau matrix representation(

1− t t
1 0

)
. Then either by direct computation or by noting that (since we can safely ignore an overall phase factor

of -1 without affecting unitarity) for no choice of t does this matrix admit the familiar parametrization of elements of

SU(2) as
(

a b
−b̄ ā

)
where a,b ∈ C and |a|2 + |b|2 = 1. It follows that the unreduced Burau representation is never

unitary.
However, the situation is not completely hopeless. We end with a theorem that tells us how to obtain a unitary

representation from the reduced Burau representation.

Theorem 2.3. Let t = s2 where s∈C∗, and define Pn−1 =


1 0 · · · 0
0 s
...

. . .
...

0 · · · sn−1

, Jn−1 =


s+ s−1 −1 · · · 0

−1 s+ s−1 . . .
...

...
. . .

. . . −1
0 · · · −1 s+ s−1

,

and ρs(b) = Pn−1ρ(b)(Pn−1)
−1, where ρ is the reduced Burau representation and b ∈ Bn.

Then ρs is unitary with respect to the Hermitian matrix Jn−1. That is,

(ρs(b))†Jn−1ρs(b) = Jn−1

Moreover, for those s∈C∗ for which Jn−1(s) can be written as Jn−1(s) = X†X for some matrix X , Xρs(b)X−1 gives
a unitary representation.

Exercise 2.4. Find all s such that Jn−1(s) can be written Jn−1(s) = X†X.

There remain basic questions about the Burau representation to which the answers are not yet known.

Open problem 2.5. The Burau representation is faithful for n = 1,2,3, and is not faithful for n ≥ 5 [2]. What about
when n = 4?
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2.4. The Alexander polynomial. The reduced Burau representation of the braid group can be used to study links by
using it to define an invariant called the Alexander polynomial. The existence of invariants which are both powerful
and computable is essential to the classification of any mathematical object. Of course, Nature conspires so that these
two characteristics are often hard to satisfy simultaneously. While the Alexander polynomial will be computable in
polynomial time, we will see that it is not quite sensitive enough to distinguish between certain types of knots.

2.4.1. From braids to links. There is a natural way to turn a braid into a link by identifying the top and bottom strands
in an order-preserving manner. This operation is called a braid closure.

For example, the closure of the Gauss braid is the connect sum of two Hopf links.

2.4.2. The Markov moves. Two other operations on braids, conjugation and stabilization, also known as the Markov
moves of type I and type II, respectively. We will see that performing either type of operation on a braid does not
change the link that is obtained from the braid closure.

I. Let b,g ∈ Bn. Then conjugation of the braid b by the braid g is given by

b 7→ gbg−1.

The best way to see that b̂ = ĝbg−1 is through a picture:

b

g

g−1

· · ·

· · ·

· · · = g

g−1

b
· · ·

· · ·

· · · = b
· · ·

· · ·

· · ·

II. Let b ∈ Bn, and let Bn be embedded in Bn+1 in the usual way, by adding a rightmost strand. Then stabilization
of the braid b is given by the map Bn→Bn+1

b 7→ bσ
±1
n .

That is, we add a rightmost n+1st strand to b to identify it as a braid in Bn+1, and then we braid its nth and n+1st
strands with either an over- or under-crossing. Once again, a picture best demonstrates that b̂ = b̂σn.

b
· · ·

· · ·

· · · = b
· · ·

· · ·

· · ·

A similar picture shows b̂ = b̂σ
−1
n .

This move introduces a twist in the braid closure, and hence can be undone by a Reidemeister move of type 1, so it
doesn’t change the link b̂.

Not only does manipulating a braid by Markov moves not change the braid closure, but whenever two braid closures
agree, their corresponding braids can be related by a finite number of Markov moves.
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Theorem 2.6 (Markov). Consider the map from the set of all braids to the set of all links given by

{Bn}→ {links}

b 7→ b̂
If b̂1 = b̂2 as links, then b1 and b2 are related by a finite number of moves of type I or type II and their inverses.

It is easy to see that the map b→ b̂ fails to be injective. For the simplest possible example, take the braid closure
of σ1, which gives the unknot.

=

It is also true, although much less trivial to show, that the map is onto. Given any link there exists a finite number
of Reidemeister moves that manipulates the link until it is in the form of a closure of a braid.

The Markov theorem gives us a way to study links through braid representations, since any braid invariant that is
also invariant under the Markov moves can be improved to a link invariant.

2.4.3. The Alexander polynomial. In order to be an invariant of links, a quantity must be invariant under the Markov
moves of type I and II. From linear algebra, we know that similar matrices have the same determinant. It follows that
the determinant of the representation of a braid is invariant under conjugation.

Recall the reduced Burau representation ρ : Bn → GLn−1(Z[t, t−1]) and define the matrices M(b) = I−ρ(b) and
M̃(b) = I− ρ̃(b), where I is the identity matrix with appropriate dimensions in each equation.

Definition 2.7. For b ∈ Bn, the Alexander polynomial is given by

∆(b̂, t) =
det(M(b))

1+ t + · · · tn−1 .

This establishes the convention that the Alexander polynomial of the unknot is 1, i.e. ∆

( )
= 1 . We present

some results from linear algebra that imply a proof that the Alexander polynomial is a link invariant, and state some
of its properties. The proof that the defined polynomial is indeed a link invariant is simply a check of the invariance of
∆(b̂, t) under Markov moves using the lemmas below.

Theorem 2.8. The Alexander polynomial of a link can be computed in polynomial time by a Turing machine.

There is a polynomial time algorithm to turn any link into a braid closure. For a braid b ∈ Bn, its Burau representa-
tion matrix can be computed in poly(n,m) and so can the determinant, where m is the number of elementary braids in
b. Note that the size of the Burau representation matrix is only (n−1)× (n−1) for a braid in Bn. As a comparison,
we will see later the sizes of the Jones representation matrices for braids in Bn grow as dn×dn for some number d > 1
as n→ ∞.

2.4.4. Linear algebraic interlude. In order to prove some properties of the Alexander polynomial, it will be useful to
apply the following lemma from linear algebra to our present setting.

Lemma 2.9. Suppose A is an n× n matrix with the property that there exists a column vector w = (wi)
T and a row

vector u = (u j) satisfying
(1) Aw = 0
(2) uA = 0
(3) wi 6= 0, u j 6= 0 for all i, j.

That is, A annihilates w, A is annihilated by u, and the coordinates of w and u are all nonvanishing. Then

(−1)i+ j det(A(i, j))
uiw j

is independent of i and j, where A(i, j) denotes the i, jth minor of A - the (n− 1)× (n− 1) matrix obtained by the
deleting the ith row and the jth column from A.
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The matrix M̃ satisfies the hypotheses of this lemma. Recall that ρ̃(b) had eigenvector (1, . . . ,1)T with eigenvalue
1 and invariant row vector (1, t, t2, . . . , tn−1). If we choose w = (1, . . . ,1)T and u = (1, t, t2, . . . , tn−1), it follows that
M̃w = 0 and uM̃ = 0. Evidently the coordinates of both w and u are nonvanishing. While the details are omitted, this
leads to the proof of the next lemma.

Lemma 2.10.
det(M(b))

1+ t + · · ·+ tn−1 = det(M̃(1,1)).

This result gives us the freedom to delete any row and column of the matrix M̃, whose determinant recovers the
Alexander polynomial. This makes certain computations easier, like the proof of the skein relation.

2.5. The Alexander-Conway polynomial, writhe, and skein relation. Having introduced the Alexander polyno-
mial, one can define a related link invariant - the Alexander-Conway polynomial - through a slight renormalization and
a quantity called the writhe of a braid.

Let b = σ
sk
ik
· · ·σ s1

i1
∈ Bn. The writhe or braid exponent is given by e(b) = ∑

k
i=1 si.

Taking z = t1/2− t−1/2, the Alexander-Conway polynomial is defined as

∆(b̂,z) = (−t1/2)n−e(b)−1
∆(b̂, t)

Under this new parametrization the behavior of our knot invariant with respect to left versus right-handed crossing
can be expressed in the elegant form of the skein relation.

∆

( )
− ∆

( )
= z ∆

( )

FIGURE 1. The skein relation satisfied by the Alexander polynomial.

Exercise 2.11. Deduce the skein relation from the definition of the Alexander-Conway polynomial and Lemma 2.10.

3. JONES REPRESENTATION AND JONES POLYNOMIAL

In a manner analogous to how the Alexander polynomial is defined in terms of the Burau representation, another
link invariant, the Jones polynomial, can be studied alongside the Jones representation. Computing the Alexander
polynomial is easy in the sense of complexity theory: there exists a polynomial time algorithm to compute it. This is
because obtaining a braid b ∈ Bn from a link diagram L, computing the Burau representation of b, and then taking its
determinant can all be done in polynomial time in the number of crossings of L.

On the other hand, assuming that P 6= NP, that is, assuming the longstanding conjecture that the complexity classes
corresponding to polynomial time and nondeterministic polynomial time are distinct, computing the Jones polynomial
is hard, in the sense that there exists no polynomial time algorithm.

However, certain values of the Jones polynomial can be approximated in polynomial time by a quantum computer.
In this section we introduce the necessary background material for constructing the Jones representation of the braid
group: the quantum integers, the Temperley-Lieb/Temperley-Lieb-Jones algebra, and the Temperley-Lieb category.
Section 4 covers the application of the Jones representation to quantum computing.

3.1. Quantum integers. We should conceptualize the quantum integers as deformations of the integers by q, which
we can either think of as generic (a formal variable) or a specific element of C∗.

Definition 3.1. 1 Let n ∈Z. Then quantum n, denoted [n]q, is given by

[n]q =
qn/2−q−n/2

q1/2−q−1/2

1There are two conventions in the literature when defining the quantum integers, depending on whether a factor of 1/2 appears in the exponents;
quantum n is sometimes defined as [n]q =

qn−q−n

q−q−1 .

9



For instance, [1]q = 1 and [2]q = q1/2 +q−1/2. It is an easy application of L’Hôpital’s rule to show that [n]q→ n in
the limit q→ 1, recovering the integers. This shows we can truly think of [n]q as some deformation of n. However, one
must take special care when performing arithmetic with quantum integers, since the familiar rules of arithmetic need
not apply. However, there is one important relation from integer arithmetic that still holds, the “quantum doubling"
formula.

Proposition 3.2. [2][n] = [n+1]+ [n−1].

This identity will reappear once we have introduced the Temperley-Lieb algebra.

3.2. The Temperley-Lieb algebra T Ln(A). Our goal is to find braid group representations with properties that are
useful for quantum computation, and towards this end we pass through the Temperley-Lieb algebra, or the Temperley-
Lieb-Jones algebra. To motivate the construction of the Temperley-Lieb algebras, we recall the following theorem
that dictates how the the group algebra for a finite group G decomposes into the irreducible representations of G [8].

Theorem 3.3. Let G be a finite group, and C[G] = {∑agg | ag ∈ C} be the group algebra of G over C. Then

C[G]∼=
⊕

i

(dimVi)Vi

where the Vi are a complete set of representatives of the isomorphism classes of finite-dimensional irreducible repre-
sentations of G.

To illustrate the theorem we recall the representation theory of S3. There are three irreducible representations: the
trivial, sign, and permutation representations, say U,U ′, and V , respectively. Then C[S3] =U⊕U ′⊕2V . Hence, as an
algebra, C[S3] decomposes as C⊕C⊕M2(C).

While we can completely describe C[G] when G is finite, when G is infinite, as in the case of G = Bn, we don’t
have the same luxury. In order to get a handle on C[Bn] we pass to a finite-dimensional quotient. The first step in this
process is to construct the Hecke algebra.

3.2.1. The Hecke algebra Hn(q). Hereafter we will work in one of two fields, C or Q(A), which we use to denote the
field of rational functions in the Kauffman variable A over C. When we are interested in the generic Temperley-Lieb
algebra, we work in Q(A), while in general we work in C. For now we use F to denote the field Q(A).

The elements of the braid group algebra F[Bn] = {∑agg | g ∈ Bn,ag ∈ F} are called formal (or quantum) braids.
To motivate what relations we should quotient out by, we record a few observations.

Recall the presentation of the braid group

Bn =
〈

σ1,σ2, . . . ,σn−1

∣∣∣ σiσ j = σ jσi for |i− j| ≥ 2,σiσi+1σi = σi+1σiσi+1, i = 1,2, . . . ,n−1
〉
.

Taking the quotient of Bn by the normal subgroup generated by the σ2
i , results in a group isomorphic to Sn. Thus

there is a surjection of the braid group onto the symmetric group, and we have an exact sequence

1−→ PBn −→Bn −→ Sn −→ 1.

This implicitly defines PBn, the pure braid group on n-strands, which will be revisited in Section 4. In particular, we
can get a representation of the braid group by precomposing with a representation of the symmetric group. However,
such a representation will not encode all of the information about the braid group that is need for computation, so it
will not be interesting for us. Therefore we need to look for representations which do not factor through Sn.

Consider the quotient of F[Bn] by the relation σ2
i = aσi +b, for i = 1, . . . ,n−1, where a and b are independent of

i. Note however, that a and b are not independent of one another, since we can rescale by setting σ̃i = σi/a. Then the
relation becomes

σ̃i
2 = σ̃i +b/a2

In other words, we can just take a = 1, so that the relation is parametrized by b. Taking the quotient of F[Bn] by this
relation defines a Hecke algebra.

Definition 3.4. The Hecke algebra Hn(A) is the quotient F[Bn]/I of the braid group algebra, where I is the ideal
generated by σ2

i − (A−A−3)σi−A−2 for i = 1, . . . ,n−1.
10



A presentation on generators and relations of the Hecke algebra elucidates its structure further. Renormalizing via
q = A−4, and defining a new set of generators by gi = A−1σi, we can define

Hn(q) =
〈

g1,g2, . . . ,gn−1

∣∣∣ gig j = g jgi for |i− j| ≥ 2,gi+1gigi+1 = gigi+1gi, and g2
i = q−1gi +q, i = 1,2, . . . ,n−1

〉
.

Due to the Hecke relation g2
i = q−1gi +q, Hn(q) (and hence Hn(A)) is finite-dimensional.

3.2.2. A presentation of the Temperley-Lieb algebra on generators and relations. In order to obtain the Temperley-
Lieb algebra, we must pass through one more quotient. Reparametrizing once again, rescaling the generators of Hn(q)
by defining ui = Aσi−A2 and d =−A2−A−2 =−[2]q, the Hecke algebra relations become

• uiu j = u jui when |i− j| ≥ 2 (far commutativity)
• uiui+1ui−ui = ui−1uiui−1−ui−1 (braid relation)
• u2

i = dui (Hecke relation)

To obtain the Temperley-Lieb algebra, we set the braid relation above to 0, so impose the following additional relation
that

• uiui±1ui = ui

Definition 3.5. The generic Temperley-Lieb algebra T Ln(A) is the quotient of the Hecke algebra Hn(q)/I, where I is
the ideal generated by uiui±1ui−ui.

The generic Temperley-Lieb algebra T Ln(A) is semisimple (also called a multi-matrix algebra), a direct sum of
matrix algebras Mni(F). This is the fact that enables us to work with matrix representations of the braid group, which,
if unitary, can be thought of physically as quantum gates. Understanding how T Ln(A) decomposes into matrix algebras
is the key to applying the Jones representation to quantum computation.

Theorem 3.6. If A is generic, then T Ln(A) is semisimple. If A ∈ C, then T Ln(A) is not in general semisimple.

We will return to the semisimple structure of T Ln(A) after introducing its picture presentation, in which computa-
tions can be performed using a graphical calculus.

3.2.3. A picture presentation of the Temperley-Lieb algebra. In the graphical calculus the variable d = −A2−A−2

previously defined in the context of the presentation of T Ln(A) with generators and relations takes on an important
role. The variable d is called the loop variable, for reasons that will soon be clear.

Definition 3.7. A diagram in T Ln(A) is a square with n marked points on the top edge and n marked points on the
bottom edge, and these 2n boundary points are connected by non-intersecting smooth arcs. In addition, there may be
simple closed loops in the diagram.

An equivalent diagram can be obtained by multiplying by a factor of d for each closed loop removed, and we
say two diagrams are the same if they are d-isotopic, that is, if they are isotopic and the boundary points are of the
respective diagrams paired in the same way.

An arbitrary element of T Ln(A) is a formal sum of diagrams, where each diagram is a word in the generators ui.
The diagram of ui has a “cup” on the top edge connecting the ith and i+1st marked points, and a “cap” on the bottom
edge connecting the ith and i+1st marked points. The jth marked point on the top edge is connected to the jth marked
point on the bottom edge by a “through strand”.

· · ·

u1

,
· · ·

u2

, . . . , · · ·
ui

, . . . ,
· · · · · ·

un−1

FIGURE 2. The Temperley-Lieb diagrams of the multiplicative generators ui.

Multiplication of diagrams is performed by vertical stacking followed by rescaling- if D1,D2 ∈ T Ln(A), then D1 ·D2
is given by stacking D2 on top of D1 and rescaling to a square.
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D1

D2

The Temperley-Lieb relations, far commutativity, the braid relation, and the Hecke relation, can all be verified using
the graphical calculus. For example, the Hecke relation becomes

u2
i = · · ·

· · ·

· · ·

· · ·
= dui

Exercise 3.8. Show that the generators ui satisfy far commutativity and the braid relation.

Theorem 3.9. The diagrammatic algebra for T Ln(A) is isomorphic to the abstract Temperley-Lieb algebra given by
generators and relations.

The proof of this result is made difficult by the diagrammatic algebra being defined up to d-isotopy.
As a vector space, T Ln(A) is generated by all the Temperley-Lieb diagrams in T Ln(A), of which there are Catalan

number cn =
1

n+1

(2n
n

)
many up to d-isotopy. In order to prove that the set of Temperley-Lieb diagrams forms a basis

of T Ln(A) as a vector space, we must show that there are no linear relations among the diagrams. This can be done
by introducing an inner product on T Ln(A), defined through the Kauffman bracket and a map called the Markov trace,
which can be thought of as a “quantum" analogue of the braid closure.

3.2.4. The Kauffman bracket. To find finite dimensional representations of the braid group, we begin by looking for
an algebra homomorphism from the braid group algebra to finite matrix algebras,

ρ : F[Bn]→
⊕

m
Mm×m(F).

A finite dimensional representation of Bn is obtained via the restriction of ρ to the braid group, ρ
∣∣
Bn

. The Kauff-
man bracket 〈·〉 : F[Bn]→ T Ln(A) is an algebra homomorphism which we can think of as producing Temperley-Lieb
diagrams by resolving crossings in the braid group algebra.

i i+1

= A

i i+1

+ A−1

i i+1

FIGURE 3. Illustration of the Kauffman bracket.

In terms of braid group generators and Temperley-Lieb generators, the Kauffman bracket is expressed by

σi = AI +A−1ui.

3.2.5. The Markov trace. The Markov trace of a diagram is the map Tr: T Ln(A) 7→ F that sends the diagram D to its
tracial closure.

D
· · ·

· · ·

· · · = d # loops

This defines the Markov trace on a basis of diagrams of T Ln(A), and by extending linearly it is defined on all of
T Ln(A). From the trace one can define an inner product 〈·, ·〉 : T Ln(A)×T Ln(A)→ F given by

12



〈D1,D2〉= Tr(D1D2).

where the bar over a diagram denotes the diagram obtained by reflecting across the horizontal midline.

D̄ =
D

Now the question of whether the diagrams in T Ln(A) are linearly independent can be translated into the question
of whether the Gram matrix (M)i j = 〈Di,D j〉 has determinant zero. M is a cn× cn matrix, where cn is the nth Catalan
number. While the details are not provided here, it is possible to express the determinant of M in the closed form

det(M) =
n

∏
i=1

∆i(d)an,i

where an,i =
( 2n

n−i−2

)
+
( 2n

n−i

)
−2
( 2n

n−i−1

)
and ∆i(x) is the ith Chebyshev polynomial of the second kind, defined recur-

sively by ∆0 = 1,∆1 = x, and ∆i+1 = x∆i−∆i−1.
Thus whenever the loop variable d is a root of a Chebyshev polynomial appearing in the determinant of the Gram

matrix, there is some linear dependence among the Temperley-Lieb diagrams. The following table lists the first few
Chebyshev polynomials.

n 0 1 2 3 4
∆n(x) 1 x x2−1 x3−2x x4−3x2 +1

The roots of ∆4 are related to the golden ratio φ , which will come up again later. The Chebyshev polynomials are
also related to the quantum integers, which we will see later.

3.3. The Jones polynomial. To motivate the form that the Jones polynomial takes, we investigate the properties that
would be needed for a quantity to give an invariant of a link. Given a braid b ∈ Bn, we can apply the Kauffman bracket
〈·〉 to resolve the crossings, resulting in a sum of 2n Temperley-Lieb diagrams. Then 〈b〉 ∈ T Ln(A), and we can apply
the Markov trace. Thus we can consider their composition Tr〈·〉 : Bn→{links}. For example,

Tr〈 〉= A + A−1 = Ad2 +A−1d = −A3d

A similar computation shows that the Markov trace of the Kauffman bracket applied to the left handed crossing
evaluates to −A−3. However, if we calculate the trace of the (topologically equivalent) unknot, the result is d. While
Tr〈·〉 is too sensitive to provide a knot invariant, it can be calibrated by multiplying a factor of (−A−3)e(b), where e(b)
is the writhe of the braid b introduced in Section 2.

We are finally ready to define the Jones polynomial2 of a link.

Definition 3.10. Let b ∈ Bn, and let L = b̂ be the link obtained from the braid closure of b. Then the Jones polynomial
J(L,q) of L is given by

J(L,q) =
(−A−3)e(b)Tr〈b〉

d
.

The reason for the factor of d in the denominator is to set the convention that the Jones polynomial of the unknot
be equal to 1. It is necessary to point out the the Jones polynomial is not well defined if we try to evaluate at a general
link instead of a braid closure - in order to make sense of the Jones polynomial of a link, it must be oriented.

By the Markov theorem, we know that whenever two links arising from braid closures are equal, they are related
by a finite number of Markov moves.

2Technically J(L,q) is a Laurent polynomial in q1/2, but it is still referred to as a polynomial in the literature.
13



Therefore, we must verify that the Jones polynomial is invariant under the Markov moves. This turns out to be an
almost identical argument that was used when demonstrating the invariance of the Alexander polynomial under the
braid closure.

Let a,b ∈ Bn. Invariance under conjugation can be seen by sliding diagrams around their tracial strands. The proof-
by-picture is identical to that provided for the proof of invariance of the Markov moves under braid closure, except
one replaces the braid diagram b by a Temperley-Lieb diagram. Similarly if a = bσ±1

n , then the diagrammatic proof
of invariance under stabilization is analogous to that for braids, except now we introduce a factor of −A−3 to correct
for the writhe.

3.3.1. Example: the Jones polynomial of the trefoil knot. We end this discussion of the Jones polynomial with a
famous example - the right-handed trefoil knot, σ̂3

1 .

There are three crossings, and hence 23 = 8 terms in the resolution 〈σ3
1 〉. The terms can be organized by a binary

tree of depth 3, where each edge is labeled by a “+ ” or a ‘− ” according to the term in the Kauffman bracket. We
compute the “ – + –” term as an example.

=−A−3 · (A−1 ·A ·A−1) ·d2

One can check that J(σ̂3
1 ,q) = q+ q3− q4. It turns out that the Jones polynomial of the left-handed trefoil knot

is different. This is an improvement over the Alexander polynomial, which cannot distinguish a knot from its mirror
image.

Open problem 3.11. Does there exist a non-trivial knot with the same Jones polynomial as the unknot? Are there
knots which are topologically different from their mirror image but have the same Jones polynomial? How does one
interpret the Jones polynomial in terms of classical topology?

Exercise 3.12. Let IK denote an invariant of knots. Then IK naturally extends to knots with double points, via

IK

( )
= IK

( )
− IK

( )

Now let k be a knot, and let q = eh, where h is a formal variable. Then the Jones polynomial has the property that

J(k,eh) = ∑vihi

where the vi are knot invariants and the series is potentially infinite. The Alexander polynomial has the same property,
and in the series expansion

∆(k,z) = 1+ c2z2 + c4z4 + · · ·
the ci are known as the Vassiliev invariants.
(a) Show that v1 = 0.
(b) Show that if there are more than three double points, c2 = v2 = 0.
(c) Show that v2 =−2c2
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3.4. The generic Jones representation. While the Alexander polynomial was defined in terms of the Burau repre-
sentation of the braid group, we were able to formulate a definition of the Jones polynomial that did not depend on
the Jones representation. However, in order to approximate the Jones polynomial on a quantum computer, the Jones
representation of the braid group must be understood. The definition of the Jones representation depends on how the
Temperley-Lieb algebras decompose into direct sums of matrix algebras.

Definition 3.13. The Jones representation ρk,n at level k of the n-strand braid group is given by the image

〈·〉 : F[Bn]→ T Ln(A) =
⊕

ni

Mni(F).

To be precise, the braid group algebra F[Bn] is resolved into the Temperley-Lieb algebra T Ln(A) via the Kauffman
bracket 〈·〉, and then after identifying the Temperley-Lieb algebra as a direct sum of matrix algebras

⊕
i Mni(F),

restricting to the braid group gives a representation of Bn.
There is a standard way to decompose an algebra as a direct sum of matrix algebras by finding its matrix elements,

elements ei j satisfying ei jekl = δ jkeil . Before presenting the general method for finding such elements in T Ln(A), we
work out the solution for some small values of n.

3.4.1. T L2(A). T L2(A) is generated as a vector space by the diagrams and which we denote by 1 and u1,
respectively. We look for elements e1 and e2 satisfying e2

1 = e1, e2
2 = e2, e1e2 = e2e1 = 0.

For then we could identify

e1 −→
(

1 0
0 0

)
,e2 −→

(
0 0
0 1

)
.

We check that taking e1 = 1− 1
d u1 and e2 =

1
d u1 gives two (diagonal) matrix units.

Indeed, the following equations show that idempotency and centrality follow from the Hecke relation.

e2
1 = (1− 1

d
u1)(1−

1
d

u1) = 1− 2
d

u1 +
1
d2 u2

1 = 1− 2
d

u1 +
d
d2 u1 = 1− 1

d
u1 = e1,

e2
2 = (

1
d

u1)
2 =

1
d2 u2

1 =
1
d

u1 = e2, and

e1e2 = (1− 1
d

u1)
1
d

u1 = e2e1 =
1
d

u1−
1
d

u1 = 0.

Therefore, the decomposition of a Temperley-Lieb algebra at n = 2 is given by T L2(A)∼= F⊕F.

3.4.2. T L3(A). As a vector space T L3(A) is spanned by , , , , and . By a dimension argument, it is
immediate that if T L3(A) is to be a matrix algebra, then we must have T L3(A) ∼= F⊕M2(F). Thus we will want to

look for an idempotent element p to identify with

1 0 0
0 0 0
0 0 0

.

We claim that the element

+ 1
d2−1

(
+

)
− d

d2−1

(
+

)

has the desired property. We will come to know this element of T L3(A) as the Jones-Wenzl projector p3.
One can see that the following ẽi j, once properly normalized, give a set of matrix units.

ẽ11 = , ẽ21 = − 1
d , ẽ12 = − 1

d

ẽ22 = − 1
d − 1

d + 1
d2
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Already in the case of n = 3, our minimal central idempotents are becoming unwieldy. We remark that if T Ln(A)∼=⊕
Mni(F), then the dimension of the Temperley-Lieb algebra, namely the Catalan number cn, can be written as a sum

of squares.
1

n+1

(
2n
n

)
= ∑

i
n2

i

For example, this relation gives 14 = 1+4+9, 42 = 1+16+25, and 132 = 1+25+25+81.
The general theory of how T Ln(A) decomposes into matrix algebras is governed by elements of the Temperley-Lieb

algebra called the Jones-Wenzl projectors, which are minimal central idempotents. While the details of the general
theory are beyond the scope of these notes, studying the Jones-Wenzl projectors is nonetheless essential for using the
graphical calculus to compute the Jones representation, for which we compute an example in Section 4.

3.5. The Jones-Wenzl projectors pn. The following theorem characterizes the Jones-Wenzl projectors.

Theorem 3.14. There exists a unique nonzero element pn in T Ln(A) such that
(1) p2

n = pn
(2) ui pn = pnui = 0 for all i = 1, . . . ,n−1.

Proof. First we prove uniqueness. Suppose that pn and p′n satisfy (1) and (2), and write pn = c0 · 1+∑
n−1
i=1 ciui,

where we have simply used the fact that {1,u1, . . . ,un−1} form a basis of T Ln(A) as a vector space. Immediately, the
condition p2

n = pn forces c0 = 1, since

p2
n = (c0 ·1+

n−1

∑
i=1

ciui)
2 = c2

0 + · · ·= pn.

Hence c2
0 = c0, and so c0 = 1. So we can write pn = 1+∑

n−1
i=1 ciui and p′n = 1+∑

n−1
i=1 c′iui. Then we can check that

p′n = pn p′n = pn.
As for existence, we provide an explicit construction. We will use the notation

pn =
n
=

n

to represent the nth Jones-Wenzl projector.

We define p1 = , p2 = − 1
d and define pn inductively by

pn+1 =
n
− ∆n−1(d)

∆n(d)
· · ·

where ∆n = Tr(pn) is the Markov trace of the nth Jones-Wenzl projector. It is straightforward to verify that this
construction results in idempotent objects that annihilate the generators of the Temperley-Lieb algebra.

Open problem 3.15. Does every diagram ui appear in pn+1?

3.5.1. The recursive definition of pn and the quantum doubling formula. We can calculate ∆n explicitly - later we’ll
show that ∆n = (−1)n[n+1]. For now we will take this as fact.

We can recover the formula [2][n] = [n+ 1]+ [n− 1] from quantum arithmetic that we proved previously. Recall
that d =−A2−A−2 =−q1/2−q−1/2 =−[2]. Taking the Markov trace of both sides of the recursive formula for pn+1
gives

∆n+1 = d∆n−
∆n−1(d)
∆n(d)

∆n.

and hence
(−1)n+1[n+2] = (−1)n[n+1](−[2])− (−1)n−1[n]

after simplifying this becomes
[n+2] = [2][n+1]− [n],
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or
[n+2]+ [n] = [2][n+1].

This is the “quantum doubling” formula shifted by one.

3.6. The non-generic Jones representation of the braid group. The generic Jones representation of the braid group
is given by the image of a braid in the matrix algebra decomposition of the generic Temperley-Lieb algebra. What
happens for specific A ∈ C∗?

Question 3.16. For which A is the Jones representation unitary? How does one compute the Jones representation and
study its properties? How can the Jones representation be used to perform quantum computation?

Let A ∈ C and suppose ρ(σi)
† = ρ(σ−1

i ) for i = 1,2, . . . ,n. Then assuming u†
i = ui, the equation

ρ(σi)
†
ρ(σ) = (A† +(A−1)†u†

i )(A+A−1ui) = |A|2 + |A−1|2dui +ui(A†A−1 +(A−1)†A) = 1

is satisfied when |A|= 1. One can also show that u†
i = ui and |A|= 1 are actually necessary conditions for ρ to be

a unitary representation. That is, A ∈ S1.
More can be said about what happens for specific value of the Kauffman variable A. Recall the recursive definition

of Jones-Wenzl projector pn+1, which involves the coefficient, ∆n−1
∆n

. Thus if A is a root of ∆n, the Jones-Wenzl
projector pn+1 is undefined. The following proposition characterizes when A is a root of ∆n.

Proposition 3.17. ∆n = (−1)n[n+1] = (−1)n A2n+2−A−2n−2

A2−A−2 .

Corollary 3.18. Whether or not A ∈ S1, the Jones representation is well-defined when A is not a root of unity.

To see what can go wrong when A is a root of unity, consider T L2(A) = C[1,u1] for A a primitive eighth root
of unity. Then −A−2 = A2 and hence d = −A2−A−2 = 0. But then T L2(A) = C[1,x] where x2 = 0, which is not
a matrix algebra. For suppose T L2(A) were a matrix algebra. Then the dimension would force the isomorphism
T L2(A)∼= C⊕C, and there would exist two central idempotents e1 and e2. Let e1 = a+bx. Then

(a+bx)2 = a2 +2abx+b2x2 = a2 +2abx = a+bx,

which has no consistent solution.
This is illustrative of a general problem that we may not necessarily get a matrix algebra when A is a root of

unity. We bypass this difficulty by passing to a quotient of the Temperley-Lieb algebra which is semi-simple, called
the Temperley-Lieb Jones algebra. Then the non-generic Jones representation is defined in analogy with the generic
definition, as the image of the braid group in a matrix algebra decomposition of T LJn(A).

3.7. The Temperley-Lieb-Jones algebra T LJn(A). Let r ≥ 3, and assume A is either a primitive 4rth root of unity
or a primitive 2rth root of unity if r is odd.

Definition 3.19. There exists a semisimple quotient of T Ln(A), called the Temperley-Lieb-Jones algebra, denoted by
T LJn(A), formed by taking the quotient by the (r−1)st Jones-Wenzl projector pr−1.

Open problem 3.20. Given a finite-dimensional algebra, taking the quotient by a Jacobson radical gives a semisimple
algebra. Is the Jones-Wenzl quotient the same as the Jacobson quotient?

3.8. The Temperley-Lieb category T LJ(A). The Jones representations of an n-strand braid group are determined by
how the Temperley-Lieb algebra T Ln(A) or T LJn(A) decomposes into a matrix algebras. In order to make sense of the
relationship between T LJn(A) and anyons, we promote the Temperley-Lieb-Jones algebras {T LJn} to a Temperley-
Lieb category. The objects of this category will be finite sets of points a1, . . . ,an in the unit interval [0,1], allowing for
the empty set, each point colored by an element of the label set L = {0,1, . . . ,k}. At each marked point, there is a
Jones-Wenzl projector pan .

Given two objects, which we label Xa1,...,an and Xb1,...,bm , where the subscript indicates the integer labeling of the
specified point, the morphisms are as follows. If m−n 6≡ 0 mod 2, then the only morphism between the two objects
is the zero morphism. If however, m+ n is an even number, then the set of morphisms is given by the span of all
Temperley-Lieb-Jones diagrams connecting the points Xai and Xb j , together with disjoint unions of loops colored by
natural numbers. That is, Hom(Xa1,...,an ,Xb1,...,bm) = F[all colored Temperley-Lieb diagrams connecting∑ai +∑b j]
modulo
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• ©i = ∆i
• relative d-isotopy
• pk+1 = 0.

Note that if the pk+1 vanishes in T LJ(A), then the recurrence relation for Jones-Wenzl projectors implies that pm
vanishes for all m≥ k+1. The following three properties of the category are immediate from the definition.

Proposition 3.21. (1) T LJ(A) is a C-linear category
(2) Hom(X ,X) is an algebra for all X
(3) Hom(X ,Y ) is a Hom(X ,X)−Hom(Y,Y ) bimodule

3.8.1. Trivalent vertices. The trivalent vertex is the most fundamental part of the Temperley-Lieb category.
The following figure from [22] gives the resolution of a labeled trivalent vertex into Temperley-Lieb diagrams.

c

ba = pa

pc

pb

The labeling of the trivalent vertex is subject to the following conditions:
(1) a+b+ c is even (“parity”)
(2) a+b≥ c,b+ c≥ a, and c+a≥ b (“triangle inequality”)
(3) a+b+ c≤ k (“positive energy condition”)

For example,

2

22 =

We summarize the important definitions into the following:

Definition 3.22. (1) As an algebra, T LJn(A) is the Hom space n points on the unit interval, each marked by 1,
with itself. We will denote this by Hom(1⊗n,1⊗n). More generally, the shorthand a stands for the object with
one point in the unit interval, marked by a.

(2) The colored Temperley-Lieb-Jones algebra is given by Hom(a⊗n,a⊗n), where a ∈ {0,1, . . . ,k}.
(3) The Jones representation for T LJn(A) is given by its image on

⊕
ni

Hom(i,1⊗n).

3.8.2. Physical interpretation of T LJn(A). We want to have a physical interpretation to go along with our definition
of T LJn(A). Morphisms in the category, which are Temperley-Lieb-Jones diagrams, depict quantum processes of
anyons, the quasi-particle excitations of a 2D topological quantum system, such as those theorized to exist in fractional
quantum Hall states.

In terms of the mathematical formalism:

Definition 3.23. An object X in the Temperley-Lieb-Jones category is simple if Hom(X ,X)∼=C, in which case we say
X is an anyon.

The number of distinct types of anyons is dictated by k, the level of the theory, and each type of anyon has an
associated number, called its quantum dimension.

Definition 3.24. The quantum dimension of a ∈ L, thought of as a representative of an isomorphism class of simple
objects, is given by the loop value da =©a.

The structure of the category captures the notion of fusion of particles.

Definition 3.25. The fusion rules are the collection {Nc
ab = dimHom(a⊗ b,c) | a,b,c ∈ L}. More compactly, the

fusion rules are implicitly defined through the equation

a⊗b =
⊕

c
Nc

abc

where c runs over the label set {0,1,2, . . . ,k}.
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Anyons generalize bosons (like photons) and fermions (like electrons) in two dimensions.
Given n indistinguishable particles, with locations x1, . . . ,xn, then the type of particle is determined by what happens

to their wavefunction ψ(x1, . . . ,xn) upon interchanging their locations. For bosons, interchanging produces no change,
while for fermions, a negative sign is generated by the interchange of any particles. That is

ψ(x1, . . . ,xi, . . . ,x j, . . . ,xn) =±ψ(x1, . . . ,x j, . . . ,xi, . . . ,xn)

depending on whether the particles are bosons or fermions. When we allow the wavefunction to be altered by an
arbitrary phase eiθ , then we have an anyon. For natural reasons one only considers rational phases of the form eiπ p/q

where p,q ∈ Z. The reason allowing an arbitrary phase produces this more general picture in two dimensions is due
to the fact that there are no nontrivial knots in R4. More precisely, if S1 ↪→R4 is an embedding, then the image of S1

can always be isotoped to the trivial knot.
For topological quantum computation, we are interested in values of k, called the level of the theory, for which the

corresponding topological phase of matter features anyons which are nonabelian. Nonabelian anyons are those for
which the representations of the braid group have non-abelian image for n large enough. Hence anyons can either be
abelian or nonabelian, but in order to be useful for anyonic quantum computation they must be nonabelian.

4. ANYON SYSTEMS AND ANYONIC QUANTUM COMPUTATION

In this section we describe the algebraic theory of anyon systems, which is given by the Temperley-Lieb-Jones
category T LJ(A) for a fixed A =± ie±2πi/4r, whose associated TQFT is known as the Jones-Kauffman theory at level
k. The focus will be on two theories, the Ising theory and the Fibonacci theory. In this section, we will use anyon and
Jones-Wenzl projector interchangeably. Anyons can be modeled by simple objects in unitary modular categories and
Jones-Wenzl projectors represent simple objects in Jones-Temperley-Lieb categories.

Anyons can be harnessed to store and manipulate quantum bits, or qubits, leading to a model of quantum com-
putation whose topological nature lends it a special robustness. Braiding the anyons gives a quantum gate that acts
on qubits via the Jones representation. Given a specific anyon model of level k described by a Temperley-Lieb Jones
category T LJ(A), understanding the image of the Jones representation ρk,n : Bn → T LJn(A) ∼=

⊕
ni

Mni(C) is tanta-
mount to assessing the power of the anyons to perform quantum computation. We will at least need the images of the
braid group representations to be infinite and dense in order for the model to be universal for quantum computation by
braiding alone, that is, powerful enough to accurately and efficiently perform quantum computation.

This section is organized as follows. First we introduce the Ising and Fibonacci theories. Then for each of the
two theories we investigate the dimensions of certain Jones representations by counting admissible labelings of fusion
trees, and demonstrate how to encode a qubit with two dimensional representations. Then we show how to compute
the Jones representation of the four-strand braid group at level 2, and trivial total charge. After introducing the R-
symbols and F-symbols, we sketch how to compute the Jones representation of the three-strand braid group at level 3,
with nontrivial total charge. Finally, with representations for the Ising theory and Fibonacci theory in hand, we present
some results about their images and interpret the consequences for their corresponding anyonic models of quantum
computation.

4.1. Introduction. We begin by setting the parameters of the theory T LJ(A) that will describe our anyon model. Pick
an integer r≥ 3, and choose A∈ {±ie±2πi/4r} for unitarity. Then the level of the theory for this choice of A is k = r−2.
For each level, there are 4 essentially equivalent theories, depending on which of the four choices of A are made. Then
the loop variable d can be expressed in terms of the level by the equation

d =−A2−A−2 = e±4πi/4r− e∓4πi/4r = 2(cosπ/r) = 2cos
π

k+2
.

The first few levels k = 1,2,3 then correspond to d = 1,
√

2,φ , where φ = 1+
√

5
2 is the golden ratio.

4.1.1. Level 1. As a warmup to the T LJ(A) theories that will be useful for quantum computation, we begin with level
k = 1. The loop variable becomes d = 2cos π

3 = 1, giving us the freedom to create and destroy loops as we please
without having to account for them.

The (k+1)st Jones-Wenzl projector that is zero in T LJn(A) is given by p2 = − and hence = in the
level 1 theory. This category is equivalent to the category of super-vector spaces; it describes the trivial free fermion
topological theory.
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4.1.2. The Ising and Fibonacci theories. We first introduce the two anyon models in parallel, choosing

A =

{
ie−2πi/16 k = 2 (Ising)
ie2πi/20 k = 3 (Fibonacci)

.

T LJ(A) is a unitary modular category (UMC) when k is even, as for the Ising theory, and unitary pre-modular tensor
category when k is odd. As for k = 3, it contains the Fibonacci sub-theory, which is a UMC of rank=2.

For level k = 2 (r = 4), the simple Jones-Wenzl projectors are {p0, p1, p2}. Thought of as anyons, the projec-
tors have an alternative physical labeling {1,σ ,ψ}, corresponding to the vacuum or ground state, Ising anyon, and
Majorana fermion, respectively. The fusion rules for the Ising theory, in their most succinct form, are given by
1⊗ x = x⊗ 1 = x for x ∈ {1,σ ,ψ}, σ ⊗ σ = 1⊕ψ , σ ⊗ψ = ψ ⊗ σ = σ , and ψ ⊗ψ = 1. The last relation is
particularly interesting–it tells us that the Majorana fermion ψ is its own antiparticle. This is the famous Ising theory.

To prove that 1,σ , and ψ are the only simple objects when k = 2, we need to compute all Hom(x,x). A nice way
to do this is to use the inner product 〈·, ·〉 that was previously defined on the Temperley-Lieb algebra in terms of the
Markov trace. Specializing A to the particular root of unity, we have the following positivity.

Proposition 4.1. For A =± ie±2πi/4r, this inner product is positive definite on all Hom(X ,Y ).

For level k = 3 (r = 5), the simple Jones Wenzl projectors are {p0, p1, p2, p3}. The subset {p0, p2} or {1,τ}
corresponding to the vacuum and the Fibonacci anyon generates the Fibonacci subtheory. The Fibonacci fusion rules
are given by 1⊗ τ = τ⊗1 = τ , and τ⊗ τ = 1⊕ τ .

4.1.3. Notation. Unfortunately, two different things are both denoted by 1’s: the T LJ(A) label 1 ∈ L, and the ground
state 1 in an anyon system such as for the Ising and Fibonacci theories corresponding to 0 ∈ L. Typically they will be
clear from the context and we will use L when labeling diagrams to avoid confusion.

Having chosen A = ±ie±2πi/r, we consider the Jones representation ρk,n,i : Bn → T LJn(A)→ Mni(C). Such a
representation is parametrized by the level k of the theory, the number of strands n in the braid group, and the total
charge i.

Define the vector space Vk,n,i to be the C-span of the fusion trees

· · ·

i

1 1 1 1

where the internal edges are admissibly labeled by elements of the label set L= {0,1,2, . . . ,k}. Physically, an admis-
sible labeling of a fusion tree corresponds to a possible fusion process of the corresponding anyons.

Our ultimate goal is to understand the image of the Jones representation ρk,n,i(Bn) in U(Vk,n,i), the unitary transfor-
mations on the vector space Vk,n,i and interpret them as quantum gates. As a first step we count admissible labelings of
Ising and Fibonacci fusion trees to get the dimension of the representations for small n, looking for a two-dimensional
representation in which to encode a qubit in order to get single-qubit gates. We will eventually also want a represen-
tation of at least dimension four, so that we can produce two-qubit gates. This turns out to be enough to show that
Fibonacci anyons can be used for universal quantum computation.

As a warm up to the Ising and Fibonacci theories, we first consider k = 1.

4.1.4. k = 1. When k = 1, the label set has two elements, L = {0,1}. Depending on whether n is even or odd, by a
parity argument there is only one way to admissibly label the fusion tree by elements of L.
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· · ·

i =

{
0 n even
1 n odd

1 1 1 1 1

0
1

Thus when k = 1 we have a one-dimensional representation of the braid group Bn.

4.2. Dimensions of Level 2 representations. Predictably, the dimension of the representation of Bn gets more com-
plicated as we increase the level of the theory. To motivate the general pattern, we work through the first few values
of n explicitly, labeling fusion trees with elements of L= {0,1,2}.

4.2.1. n = 2. For n = 2, there are two admissible values of i for the fusion tree, resulting in two one-dimensional
representations.

1 1

0

1 1

2

4.2.2. n = 3. When n = 3, the value of i is determined, but there are two different ways to label the edges of the fusion
tree consistently, giving a two-dimensional representation.

1 1 1

0/2
1

4.2.3. n = 4. When n = 4, there are two distinct values of i, and for each value of i, two different ways to label the
edges of the fusion tree. Therefore we get two separate two-dimensional representations.

111 1

0/2
1

0

111 1

0/2
1

2

Both of these representations are isomorphic to C2. The representation ρ2,4,0 corresponding to the lefthand fusion
tree is presented in the following section. The other representation ρ2,4,2 is different, but similar, and is left to the
reader as an exercise.

4.2.4. The Majorana qubit. We introduce a convenient piece of notation for fusion trees. Often we want to make the
identification of a certain fusion tree corresponding to a two-dimensional representation with the standard orthonormal
basis vectors |0〉 and |1〉 of C2. To make this identification, we typically need to normalize a fusion tree. Instead of
carrying around a potentially cumbersome normalization factor along with the fusion trees, we use open circles at the
vertices of the fusion tree to indicate that it is normalized. The usual notation for a qubit is as a superposition of the
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states 0 and 1, α|0〉+β |1〉, |α|2 + |β |2 = 1. By identifying |0〉 and |1〉 with the fusion trees

|0〉=

111 1

0
1

0

|1〉=

111 1

2
1

0

we arrive at the famous Majorana qubit.
This type of analysis produces the dimension of the Jones representation of Bn for k = 2. In a similar way, we can

analyze the dimensions of the Jones representation for the Fibonacci subtheory, by considering what happens when
we label the top of the fusion tree by 2’s.

4.2.5. How the Fibonacci theory got its name. Technically, the theory of Fibonacci anyons uses the colored Jones
representation where instead of considering Hom(i,1⊗n), we replace the label 1 with another label 2 = τ in L =
{0,1,2, . . . ,k} and consider Hom(i,a⊗n) for a ∈ L. In particular, we are looking for a basis of Hom(1,τn), where τ is
the Fibonacci anyon. This still provides a representation of the n-strand braid group, we have just “colored” the braids
by τ .

Remark 4.2. It is possible to obtain the same representation through the uncolored Jones representation with the
right choice of Kauffman variable A up to a character because 1⊗3 = 2.

The anyon model {1,τ} is called the Fibonacci theory because the Fibonacci numbers appear as the dimensions of
the spaces Hom(1,τ⊗·· ·⊗ τ). Hereafter we use the T LJ(A) labels and anyon labels interchangeably.

When n = 1 there is one admissible fusion tree, but i 6= 0, and hence dim(V3,1,0) = 0.

2

2

When n = 2, there are two ways to label a fusion tree, one of which has trivial total charge, and hence dim(V3,2,0) =
1.

2 2

0/2

When n = 3, the image splits into a one-dimensional space isomorphic to C and a two-dimensional space, isomor-
phic to C2.

2 2 2

0/2
2

2 2 2

2
0

Evidently dim(V3,3,0) = 1.
Now if n = 4 and i = 0, we get dim(V3,4,0) = 2.

222 2

0/2
2

0
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So far the dimensions form the sequence 0,1,1,2 . . ., the first few Fibonacci numbers. The Fibonacci fusion rule

τ⊗ τ = 1⊕ τ

governs the dimension of Hom(i,τ⊗n).
Using this fusion rule, we can make an observation about how our Fibonacci fusion trees are nested in one another.

n

dim
· · ·

0

2 2 2 2 2

= dim

n−2

· · ·

0

2 2 2 2 2

+ dim

n−2

· · ·

2

2 2 2 2 2

So the dimensions satisfy the recurrence relation

fn,0 = fn−2,0 + fn−2,2 = fn−2,0 + fn−1,0

which is exactly the relation that defines the Fibonacci numbers Fn and hence dimV3,τ⊗n,0 = Fn−1.
Algebraizing this fusion rule, we get the equation x2 = 1+ x, whose solutions are the golden ratio φ and its Galois

conjugate. The golden ratio also satisfies the identity φ = φ−1 + 1, which will be useful for calculations in the Fi-
bonacci theory. The Fibonacci representation always splits into two subrepresentations as ρ3,τ⊗n = ρ3,τ⊗n,1⊕ρ3,τ⊗n,τ :
Bn→U(Fn−1)⊕U(Fn), corresponding to the total charge 1 and total charge τ .

4.2.6. The Fibonacci qubit. For the Fibonacci qubit, we identify

|0〉= φ−1

τ τ τ

1
τ

|1〉= φ 3/2

τ τ τ

τ

τ

or in the new notation

|0〉=

τ τ τ

1
τ

|1〉=

τ τ τ

τ

τ

4.2.7. Dense versus sparse qubit encodings. The qubit encoding above using three Fibonacci anyons is called a dense
encoding. By raising the number of anyons, like in the two-dimensional representation

τττ τ

1

we obtain a sparse encoding. While the dense encoding is mathematically easier to work with, the sparse encoding
is physically preferable. This is because the total charge i of an anyon system is a boundary condition, and in an
experimental set up, letting the boundary condition just correspond to the ground state is energetically more favorable.

Now that we have found two-dimensional representations ρ2,4,0/2 and ρ3,τ⊗3,τ , we would like to be able to compute
these them explicitly and write down their matrices with respect to an orthonormal basis on the vector spaces Vk,n,i.
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4.3. Computing Jones Representations and ρ2,4,0(σ1). To illustrate a general method for computing the Jones rep-
resentation of the generators σi of the braid group Bn, we calculate the Jones representations ρ2,4,0(σ1).

Recall the two fusion trees that span V2,4,0, shown bellow, which we now call ẽ0 and ẽ1. The first step is to turn
them into a basis using Gram-Schmidt orthonormalization.

111 1

0 1
0

111 1

2 1
0

4.3.1. Notation. It will be convenient to introduce another notation for elements of Hom(i,1⊗n), in which the need
to label every edge of a fusion tree is eliminated. Edges labeled by the ground state 0 become dashed edges, edges
labeled by a 1 are usual lines, and edges labeled by a 2 become wavy lines.

0
=

1
=

2
=

Under this new notation ẽ0 and ẽ1 become

Hereafter we will drop the dashed lines labeling the ground state. First we calculate the inner products 〈ẽi, ẽ j〉 using
the graphical calculus.

〈ẽ0, ẽ0〉= = d2 = 2

〈ẽ1, ẽ1〉= = =

2

1

1

= 1
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〈ẽ0, ẽ1〉= = = 0

The full details of the calculations for 〈ẽ1, ẽ1〉 and 〈ẽ0, ẽ1〉 are left to the reader as an exercise, and entails inserting
the appropriate Jones-Wenzl projectors at the trivalent vertices and using the graphical calculus.

Since 〈ẽ0, ẽ1〉 = 0, the choices e0 = 1√
2
ẽ0 and e1 = ẽ1 define an orthonormal basis {e0,e1} of V2,4,0. Then with

respect to this basis, ρ(σ1) =

(
〈e0,σ1e0〉 〈e0,σ1e1〉
〈e1,σ1e0〉 〈e1,σ1e1〉

)
.

For example,

〈σ1e0,e0〉= ( 1√
2
)2 = 1

2 ·A + 1
2 ·A

−1 = 1
2 (A ·d

2 +A−1d3) =−A−3

,

where the crossings were resolved using the Kauffman bracket. Similar calculations for the remaining matrix entries
show that

ρ(σ1) =

(
−A−3 0

0 A

)
.

By repeating the same method to find the remaining generators ρ(σ2) and ρ(σ3), one can calculate the image ρ4,2,0(b)
for any b ∈ B4.

This outlines an elementary way to find the Jones representation. While it has the benefit that it uses only knowledge
of the Kauffman bracket and arithmetic, as n gets larger it becomes inefficient to do by hand. Using additional structure
in T LJ(A) as a UMC, the θ -symbols, R-symbols, and F-symbols provide more tools to find ρn,k,i using the graphical
calculus.

4.4. θ -symbols, R-symbols, and F-symbols. In this section we will use graphs with open circles at the vertices to
indicate that it has been normalized.

Take any admissibly-labeled trivalent vertex eab
c , i.e. an element of Hom(c,a⊗b). Then the θ -symbol θ(a,b,c) is

defined to be the the inner product 〈eab
c ,eab

c 〉 of the trivalent tree basis eab
c .

In the next two sections we introduce the R and F-symbols. Once these symbols are determined for an anyon model
they can be used to calculate the desired braid group representation.

4.4.1. R-matrices. Braiding gives a linear map

: Hom(c,a⊗b)→ Hom(c,b⊗a)

.

It is in fact an isomorphism, with inverse given by the opposite crossing. Since Hom(c,b⊗ a) is one-dimensional in
TLJ theory, and we already have a preferred basis for it, namely the trivalent vertex labeled by b, a, and c, the equation

a b

c

= Rab
c

c

ba

holds, where Rba
c is a scalar, which we call the braiding eigenvalue or R-symbol. There is a general formula that

gives the R-symbols, for any Kaufmann variable A and any Temperley-Lieb category, given by
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Rab
c = (−1)

a+b−c
2 A

−[a(a+2)+b(b+2)−c(c+2)]
2 .

One can also calculate the R-symbols from their defining relation by taking the inner product of both sides of the
equation with the trivalent vertex labeled by a, b, and c, which we demonstrate in the following example with R22

2 ,
where the labels “2" on the right hand side of the equation indicate that every edge in the diagram is labeled by a 2.

2

2

R22
2 =

By resolving the top diagram via the Kauffman bracket and inserting Jones-Wenzl projectors p2 at the appropriate
vertices, R22

2 can be calculated by hand. However, doing so efficiently requires familiarity with the graphical calculus
and its shortcuts.

Exercise 4.3. Calculate R22
2 using the graphical calculus and compare with the formula.

4.4.2. F-matrices. The other hero in the theory is the F-matrices, which tells us how to make changes of basis. We
consider the space Hom(d,(a⊗b)⊗ c), with orthonormal basis given by {e(ab)c

d,m }, where

e(ab)c
d,m =

a b c

m
d

.

Similarly, we can consider the orthonormal basis {ea(bc)
d,n } of Hom(d,a⊗ (b⊗ c)), where

ea(bc)
d,n =

a b c

d
n

.

Then F : {e(ab)c
d,m }→ {e

a(bc)
d,m } is the change of basis matrix, satisfying

e(ab)c
d,m = ∑Fabc

d,nmea(bc)
d,n .

The F-matrices are notoriously hard to find, although there is a general formula. Similar to the method described
in the previous section for computing the R-symbols by tracing out their defining relation, there is a way to calculate
them using the graphical calculus.

For example, the two fusion trees 0/2 and 0/2 each give a basis for Hom(2⊗2,2⊗2), where each edge that

is not explicitly labeled is understood to be labeled with a 2. Therefore they satisfy the following equations.

= α + β
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= γ + δ

The constants can be determined by taking the trace of each equation in two different ways: once vertically and
once horizontally. That is, once connecting top and bottom edges and once connecting left and right edges. The

calculations can be simplified using the θ -symbols. The F-matrix is then given by
(

α β

γ δ

)
.

Exercise 4.4. Use the graphical calculus to show that the F-matrix is given by
(

φ−1 φ−1/2

φ−1/2 −φ−1

)
.

4.5. Calculating the representation ρ3,τ⊗3,τ for the Fibonacci theory.

4.5.1. The Fibonacci R and F-matrix. When A = ±ie2πi/10 using the formula Rab
c = (−1)

a+b−c
2 A

−[a(a+2)+b(b+2)−c(c+2)]
2 ,

we find
R22

0 = A−8 = e−4πi/5,R22
2 =−A−4 =−e−2πi/5.

The Fibonacci F-matrix is given by

F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
.

Either of these quantities can be found using the method outlined in the previous section.

4.5.2. The Jones representation ρ3,τ⊗3,τ . Given the R and F-symbols, ρ(σ1) and ρ(σ2) take the form

ρ(σ1) =

(
Rττ

1 0
0 Rττ

τ

)
, ρ(σ2) = Fρ(σ1)F−1

Explicitly, the generators σ1 and σ2 have representations

ρ(σ1) =

(
ξ−2 0

0 −ξ−1

)
,ρ(σ2) =

(
φ−1ξ 2 −φ−1/2ξ

−φ−1/2ξ −φ−1

)
,

where ξ = e2πi/5 and φ is the golden ratio.
Having introduced the main tools for calculating braid group representations, we turn to studying their images.

4.6. The image of the braid group representation. The basic questions we must have the answers to in order to
apply the representations to quantum computation are the following:

Question 4.5. (1) Is the image ρk,n,i(Bn) in U(Vk,n,i) finite or infinite?
(2) If it is infinite, what is the compact Lie group ρk,n,i(Bn)⊂U(Vk,n,i)?

The first question was answered by Jones in his seminal 1984 paper [9], and the second by Freedman, Larsen, and
Wang in 2002 [6].

Theorem 4.6 (Jones). For k ∈ {1,2,4}, ρk,n,i(Bn) is a finite group. For other values of k and n ≥ 3, ρn,k,i(Bn) is
infinite, except for when k = 8 and n = 4.

The following theorem characterizes the closed image of the Jones representation.

Theorem 4.7 (Freedman, Larsen, W.). When ρk,n,i(Bn) is infinite, SU(Vk,n,i)⊂ ρk,n,i(Bn).

Special unitary matrices are the stuff of which quantum gates are made, so this result has an important application
to quantum computation.

While we have stated very general results about the images of braid group representations whose proofs are beyond
the scope of these notes, there are more elementary ways that we can reproduce these results in the k = 2 and k = 3
case, to address whether the Ising and Fibonacci models can be useful for quantum computation.
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4.6.1. The image of ρ2,4,0.

Theorem 4.8. (1) For k = 2, the Temperley-Lieb-Jones algebra T LJn(A) is isomorphic to a Clifford algebra.
(2) The short exact sequence

1→Zn
2→ ρ2,n,i(Bn)→ Sn→ 1

is exact projectively.

To prove the first part of the theorem, we’ll need to know that the Majorana version of a Clifford algebra is the
C-span of vectors {e1, . . . ,en−1}, subject to the relation eie j +e jei = 2δi j. The k = 2 Temperley-Lieb-Jones algebra in
terms of generators and relations is the C-span of the diagrams {u1, . . . ,un−1}, modulo the relation p3 = 0:

T LJn(A) = {u1, . . . ,un−1}/p3 = 0.

In order to show that these two algebras are isomorphic, we need a conversion between the generators ei of the
Clifford algebra and the ui of the Temperley-Lieb-Jones algebra. Recall σi = A+A−1ui, and define gi = −A−1σi =
−1−A−2ui. Since A is an eighth root of unity when k = 2, g2

i = 1−dui. On the other hand, the ei can be written as
ei = (

√
−1)i−1g2

i g2
i−1 · · ·g2

1, so that gi =
√
−1eiei+1. Then one can check that their mutual definitions with respect to

the gi agree.
The following proposition contains the relations needed in order to prove the second part of the theorem.

Proposition 4.9. (1) g2
i g2

i+1 +g2
i+1g2

i = 0
(2) gig2

i±1g−1
i = ig2

i g2
i±1

The proof is an exercise for the reader in the graphical calculus. For the second part of the proof, we reduce the
problem to that of showing that the image of the pure braid group is finite projectively (up to a scalar which is a root
of unity).

Recall the pure braid group PBn, which is defined implicitly through the short exact sequence

1→ PBn→Bn→ Sn→ 1,

and can be interpreted as a group of braid diagrams which start and end in the same position. For example, the
following braid on four strands is a pure braid:

An important class of pure braids are those of the form σ2
i for any generator σi of Bn.

In order to show ρ(Bn) is finite, it is enough to show that ρ(PBn) is finite. Certain conjugates of elements of the
form σ2

i form a generating set Ai j of PBn, where

Ai j = (σ jσ j−1 · · ·σi+1)σ
2
i (σ jσ j−1 · · ·σi+1)

−1, i < j.

It is also enough to show that ρ(PBn) is finite projectively. Now the first part of Proposition 4.9 tells us that the g2
i ’s

commute up to an overall minus sign, and furthermore we can deduce that g16
i = 1. Then it follows from the second

part of the proposition that the image of the pure braid group is generated by g2
i .

Thus when k = 2 the Jones representation of the braid group has finite image.
The physical consequence of 4.8 is that

Corollary 4.10. The Jones representation at level 2 cannot be used for universal quantum computation by braiding
alone.

This means that the set of quantum gates that come from the matrix representations ρ2,n,i of the braiding of the
anyons {1,σ ,ψ} of the Ising model is not powerful enough to build a universal quantum computer. In order to prove
this corollary, one needs to know about the mathematical formalism of quantum computation, which will be discussed
shortly.

One the other hand, we claim that all of SU(2) is contained in ρ3,τ⊗3,i(B3).
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4.6.2. The image of ρ3,τ⊗3,τ . The following theorem characterizes the closed images of ρ3,τ⊗3,i in U(V3,τ⊗3,i).

Theorem 4.11. ρ3,τ⊗3,i(Bn)⊃ SU(V3,τ⊗3,i).

Recall that the generators σ1 and σ2 have representations

ρ(σ1) =

(
ξ−2 0

0 −ξ−1

)
,ρ(σ2) =

(
φ−1ξ 2 −φ−1/2ξ

−φ−1/2ξ −φ−1

)
.

4.6.3. Proof of the theorem. We begin by showing that the image is infinite. Of course, it suffices to demonstrate the
existence of an element in the image which is of infinite order. Since the matrix representation of σ1 is diagonal, it is
easy to see that its order is just the least common multiple of the orders of the roots of unity appearing on the diagonal,
and hence σ1 has order 10. Since all elements of the braid group are in the same conjugacy class, it follows that σ2 has

order 10 as well. Let σ1 =

(
ξ−2 0

0 −ξ−1

)
and σ2 = Fσ1F , where ξ = e2πi/5. Consider σm

1 σ2, where σ10
1 = 1 and

m = 1,2, . . . ,9. We claim that when m = 4 and m = 9, both elements σm
1 σ2 are of infinite order, and moreover, they

don’t commute. To see that they do not commute, suppose

(σ4
1 σ2)(σ

9
1 σ2) = (σ9

1 σ2)(σ
4
1 σ2)

then using that σ1 has order ten, it follows that

σ
4
1 σ2σ

−1
1 σ2 = σ

−1
1 σ2σ

4
1 σ2

and hence

σ
5
1 σ2 = σ2σ

5
1 .

But one can check using the definitions of σ1 and σ2 that this is impossible.
To prove that σ4

1 σ2 and σ9
1 σ2 are of infinite order, we use the result in [3] that all 0 sum of a few roots of unity are

known. Suppose σ4
1 σ2 is of finite order, then there will be two roots of unity λi, i = 1,2 such that Tr(σ4

1 σ2) = λ1 +λ2
and λ1λ2 = det(σ4

1 σ2) = ξ . The trace Tr(σ4
1 σ2) can be written as an integral identity of ξ and λ1. But this cannot

happen by inspecting such sums in [3]. Similarly, we can show σ9
1 σ2 is of infinite order. Putting g1 = σ4

1 σ2 and
g2 = σ9

1 σ2, this shows that {gm
1 }= SO(2) and {gm

2 }= SO(2) both inject into SU(2), showing that this representation
is one-qubit universal. This theorem tells us that {ρ(σ1),ρ(σ2)} is a universal gate set, and so in a sense is “as large
as it can get”.

Corollary 4.12. Braiding Fibonacci anyons is enough to get any single qubit quantum gate.

But what about n-qubit gates? In general, we need n-qubit space (C2)⊗n to be contained in Hom(3,τ⊗n,1). It will
be enough so show we can get all two-qubit gates.

In the next section we provide the background necessary to assess the power of the images of the Jones represen-
tations as quantum gates. Once the algebra of universality has been established the physical theorems stated for the
Ising and Fibonacci theories follow.

4.7. Quantum gates and universal quantum computation. Classically, a decision problem is the following: given
a sequence of functions { fn} : Zn

2 to Zn
2 on n-bit strings, compute fn(x) for all x ∈ Zn

2. “Quantizing" this set up, we
have a quantum decision problem - given a sequence of { fn} on C[Zn

2]
∼= (C2)⊗n, the space of n-qubits, find a unitary

matrix U such that U |x〉= | fn(x)〉. Such matrices are written with respect to the computational basis Zn
2 of (C2)⊗n.

We are always concerned with efficient approximation when performing computation. The correct notion of effi-
ciency is that U should be a composition of gates, of length polynomial in n.

The building blocks of which such a U is composed are elements of a small gate set, say, S = {g1, . . . ,gm}, where
each gi is a 2×2 or 4×4 unitary matrix, i.e. each acts on a one qubit (C2 ) or two-qubit (C2⊗C2) subspace of (C2)⊗n.
These gate sets, while acting on a few qubits at a time, are extended trivially on the remaining qubits by tensoring with
the identity. A gate set is said to be universal if we can build any unitary matrix to arbitrary accuracy with a finite
number of elements of our gate set. More precisely, if we consider the set of all quantum circuits on (C2)⊗n that can
be built from our gate set, then it is universal if it is dense in SU(2n).
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4.7.1. Single-qubit gates. Some of the most foundational results in quantum computation are the following theorems
concerning the gates

H =
1√
2

(
1 1
1 −1

)
,T =

(
1 0
0 eiπ/4

)
, and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Theorem 4.13. The gate set {H,T,CNOT} consisting of the Hadamard gate, phase-shift, and controlled-not gates is
universal for quantum computation.

Theorem 4.14. Let G be the set of all compositions of H and T . Then the closure G⊃ SU(2).

Therefore, if the Hadamard and π

8 matrices can either be realized exactly or efficiently approximated by matrices
coming from the images of Jones representations, then the corresponding anyon model is sufficient to perform any
single-qubit computation. If in addition an entangling gate like CNOT can be realized, then the anyon model can be
used to build a universal quantum computer.

Question 4.15. Which matrices in U(2) can be realized exactly by a braid up to an overall phase?

The following theorem is an answer to this question for B3 in the Fibonacci theory [11].

Theorem 4.16. Let ω = e2πi/10 and let u,v ∈Z[ω] satisfying |u|2 + |v|
2

φ
= 1. Then any matrix of the form

M =

(
u v̄φ 1/2

vφ−1/2 −ū

)(
1 0
0 ωk

)
can be realized exactly by a braid in B3 in the Fibonacci theory.

4.7.2. Two-qubit gates and entanglement. The notion of entanglement is key to understanding universality.

Definition 4.17. A gate g in U(4) is not entangling if either g = A⊗B or SWAP g = A⊗B, where A,B ∈U(2) and

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. If a gate is not of this form, then it is called entangling.

The simplest example of an entangling gate is the CNOT gate. To show that CNOT is entangling, we must prove
that neither CNOT nor SWAP CNOT can be written as a tensor product A⊗B, with A,B∈U(2). Recall that the CNOT
has the following matrix with respect to the computational basis

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


If a matrix M can be written M = M1⊗M2, where M1 has eigenvalues λi and M2 has eigenvalues µ j, then the

eigenvalues of M are of the form {λiµ j}. CNOT has eigenvalues 1,1,1,−1. So if there were matrices A and B with
eigenvalues λ1,λ2 and µ1,µ2 respectively, then they would have to satisfy the system of equations

λ1µ1 = 1
λ1µ2 = 1
λ2µ1 = 1
λ2µ2 =−1

.

But detλi j = 0, so this cannot happen. The same argument applies to show that SWAP CNOT cannot be written as a
tensor product.

Any four-by-four unitary matrix, that is, any two-qubit quantum gate, can be written as a tensor product of single-
qubit gates and an entangling gate, as the following theorem states.
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Theorem 4.18. Given any entangling gate E, any matrix in U(4) can be written as a finite product of some number
of E’s and matrices in U(2) up to an overall phase.

Thus far we understand how to produce two-qubit gates. To be able to construct n-qubit gates, we need the following
definition.

Definition 4.19. A matrix is 2-level if it is not the identity only on a 2-dimensional subspace.

An important example of a 2-level matrix for our purposes is of the kind

1 0
0 1 0

0 U

, where U ∈U(2).

The following lemma collects the facts that allow local unitary computation.

Lemma 4.20. Every unitary matrix M is a product of 2-level unitary matrices. Every 2-level matrix can be realized
as a product of 1-qubit gates and CNOTs.

The results we have collected thus far imply the following theorem.

Theorem 4.21. The CNOT gate, together with SU(2) forms a universal gate set. That is, if U ∈ SU(2n), then U can
be written as a tensor product of CNOT gates and 2×2 unitary matrices.

All of the linear algebra is now in place to understand what is needed for a small gate set to be universal.

4.8. Ising and Fibonacci quantum computers. Since the image of ρ2,4,0 is finite in U(2), we can’t get a universal
gate set from the Ising theory. On the other hand, we have shown that the closure of the image of ρ3,τ⊗3,τ contains
SU(2), and hence can produce any single-qubit gate. Moreover, the image of ρ3,τ⊗6,1 : B6 → U(5) can be used to
approximate an entangling gate, as implied by the theorem below.

In the dense encoding, we choose the two-qubit computation subspace in V3,τ⊗6,1 as follows by the following fusion
tree:

1

τ τ τ ττ τ

i
x

j
τ

V3,τ⊗6,1 is 5-dimensional. When x = 1, there is only one admissible labeling, so it spans a one-dimensional subspace
of V3,τ⊗6,1. We will not use this subspace for computation, so it will be called a non-computational subspace. When
x = τ , then all choices of i, j ∈ {1,τ} are admissible, so we obtain a natural two-qubit subspace of V3,τ⊗6,1. We will
denote the 4 basis elements as {ei j}. Ideally, we would like to find an entangling braid b ∈ B6 on V3,τ⊗6,1 so that
the resulting matrix ρ(b) is the identity on the non-computation subspace, but an entangling gate on the two-qubit
subspace. But we do not know the existence of such braiding gates. It would be extremely interesting to know if such
no leakage entangling braiding gates exist or not. But in practice, we will use the following density theorem to find
entangling braiding gates with arbitrary small leakage to the non-computational subspace.

Theorem 4.22. (1) SU(5)⊂ ρ3,τ⊗6,1(B6).
(2) Any matrix in SU(4) can be approximated to any precision by the gate set {ρ(σi), i = 1, ...,5} on the compu-

tational subspace C[{ei j}], i, j ∈ {1,τ}.

The proof of this theorem is not elementary so we omit the details. Presumably we can use an inductive argument
using irreducibility and density of one-qubit gates Thm. 4.11. Therefore a universal gate set can be built from braiding
Fibonacci anyons, proving Theorem 1.1 for r = 5.

Open problem 4.23. Is there a two-qubit entangling gate that can be realized by braiding exactly in the Fibonacci
theory?
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4.9. General TLJ for quantum computing. In earlier sections, we explain Ising and Fibonacci theories. In general
any TLJ theory can be used for anyonic quantum computation.

The Jones-Kauffman theory at level k = r−2≥ 1 is the TQFT associated to the TLJ theory with the choice of

A =


ie−2πi/4r k ≡ 0 mod 2
ie2πi/4 k ≡ 1 mod 2 and k ≡ 1 mod 4
−ie−2πi/4 k ≡ 1 mod 2 and k ≡−1 mod 4.

When k is even, the TLJ category is a unitary modular category modeling anyons, while when k is odd, it is a
unitary pre-modular category modeling fermions. This generalizes the Ising and Fibonacci theories.

5. APPROXIMATION OF THE JONES POLYNOMIAL

In this section we discuss the approximation of the Jones evaluations J(L,e±2πi/r), i.e. Jones polynomial at roots
of unity, by a quantum computer. This approximation algorithm is a consequence of the efficient simulation of TQFTs
with several clarifications [5]. Our approximation goes through the Jones representations of the braid group, therefore
we need to choose a closure from braids to links. For our algorithm, we use the plat-closure of braids with an even
number of strands. It was observed that if instead the braid closure is used, the approximation is potentially easier [20].
Approximations have variations [12], and our approximation is an additive one. Strictly speaking, we approximate
the normalized Jones evaluations: J(L,e±2πi/r) divided by dn. For the plat-closures of braids b ∈ B2n, the unlink of
n-components has the largest absolute value dn. It is known that the distributions of Jones evaluations J(L,e±2πi/r)
for r 6= 1,2,3,4,6 are limiting to a Gaussian as n→ ∞ [7]. Hence, a Jones evaluation is typically small. Our BQP-
complete theorem for an additive approximation with an error scaling as inverse poly(n,m), where m is the length
of braids, implies that the normalized Jones evaluation cannot be always exponentially small because otherwise, we
could just set the approximation to be 0.

Recall that the Jones evaluations J(L,e±2πi/r) is a map from the set of oriented links to Z[q±1/2] for q = e±2πi/r.
In order to turn the evaluation at roots of unity into a computation problem, we must encode a link L and the Jones
evaluations J(L,e±2πi/r) as bit strings, whereupon it becomes Boolean maps Zn

2 → Z
m(n)
2 , that send the bit strings

encoding of the input L to the bit strings encoding of the output J(L;e±2πi/r).

How does one turn a link into a bit string? First we present L as the plat-closure of some braid, say L = ̂
σ

sk
ik
· · ·σ s1

i1
.

Then the integers {i j} and {s j} can be written in terms of their binary expansions and finally converted into bit strings.
As for encoding J(L,e±2πi/r) as a bit string, we can use their binary expansions of the real and imaginary parts. In

general these binary expansions will be infinitely long. In our algorithm we are going to approximate the evaluations.
Therefore, once we are given the error ε , we can decide where to truncate the infinite bit strings.

The classical complexity of computing the Jones polynomial exactly at roots of unity is summarized in the following
theorem [21, 7].

Theorem. For r 6= 1,2,3,4,6, computing the Jones evaluations J(L,e2πi/r) exactly is #P hard. Moreover, the Jones
evaluations {J(L,e2πi/r)} for all link L at r 6= 1,2,3,4,6 is dense in C.

The following table organizes the known complexity results concerning the computation and approximation of the
Jones polynomial at roots of unity of order r 6= 1,2,3,4,6 [21, 12, 5, 6].

Exactly Approximately
Classically #P No FPRAS
Quantum mechanically ? BQP-complete

5.1. Approximating Jones evaluations by a quantum computer. How is the Jones polynomial of a link L evaluated
by an anyonic quantum computer at a root of unity? Suppose b ∈ B2n is a braid whose closure gives the link L.
Physically, a “cup" state is prepared by creating n pairs of anyons from the vacuum. Then the anyons are braided by b.
Then measurement is performed by projecting onto a “cap state". This computes |〈 cap |ρ(b)| cup 〉|2, which recovers
normalized the Jones evaluations. The figure below illustrates the process, which corresponds to the mathematical
operation of taking the plat closure of b.
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〈 cap |ρ(b)| cup 〉= b

· · ·

· · ·

Classically, this computation is hard as the exponential size of ρ(b) hints. However, there exists an efficient quan-
tum algorithm to approximate the evaluations of the Jones polynomial [5], cf. Theorem 1.2. Precisely, we have:

Theorem 5.1. Let q = e±2πi/r, d = 2cosπ/r,σ̂P the plat closure of σ ∈ B2n, and J(σ̂P,q) :
⊔

∞
n=1B2n→Z[q±1/2] the

Jones evaluation. Given m = |σ |, n, there exists a quantum circuit of size polynomial in n, m and 1/ε = poly(n,m)
such that UL outputs a random variable Z(σ), where 0≤ Z(σ)≤ 1, and∣∣∣∣∣ |J(σ̂P,q)|2

dn −Z(σ)

∣∣∣∣∣< ε.

Such an approximation is called an “additive” scheme. The full details of the proof are not provided here and can
be found in [22, 1]. We will simply illustrate the main steps and ideas.

5.2. Turn basis vectors into bit strings. For an illustration of this step, that of converting basis vectors into bit
strings, we consider the case k = 3 and the six-strand braid group B6. Given the fusion tree in Hom(0,1⊗6), we attach
a qubit at each vertex with basis |i1i2i3i4〉,

0

1 1 1 11 1

a1
a2

a3
1

where i j ∈ {0,1} and a j ∈ {0,2}. If a j = 0, we take i j = 0, and if a j = 2, then we take i j = 1. Then we can define
the map a1a2a3 7→ |i1i2i3i4〉. This gives an efficient embedding of a basis of V3,6,0 into bit strings.

5.3. Simulating the Jones representation. When we use anyons for quantum computation, we choose a computa-
tional subspace (C2)⊗l in Vk,1⊗m,0. Now for the simulation of the Jones representation Vk,m,0, we seek a quantum circuit
U which makes the following diagram commute. By turning basis into bit strings, Vk,m,0 is embedded as a subspace in
(C2)⊗(m−2). The Jones representation of Bm is extended to (C2)⊗(m−2) by the identity on the orthonormal complement
of embedded Vk,m,0.

(C2)⊗l � � // Vk,1⊗m,0
� � //

ρ(σ)

��

(C2)⊗(m−2)

U
��

Vk,1⊗m,0
� � // (C2)⊗(m−2)

We must compute the braid group action on the basis of Vk,m,0. By thinking about how the braid group generators
act on Vk,m,0, we are led to pieces of fusion trees like the ones below, those diagrams now being drawn horizontally.

x yz

i i+1
F-move

x

i i+1

y
z′

The diagram on the left can be changed to the form on the right via an F-move, and then the braiding can be
removed using an R-symbol. In this manner, by stacking the braid group generators on a basis element of Vk,1⊗m,0 and
then using the graphical calculus to resolve it into a linear combination of our computational basis elements, the Jones
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representation can be calculated for any n. The important observation is that the extended Jones representation is now
local: the 2-level matrix in the definition of the Jones representation acts now on only two qubits. In physical terms,
since everything is localized, we only need to concern ourselves with two qubits at a time.

Finally, due to the fusion rules for basis elements of Vk,1⊗m,0, the Jones representation is a composition of a sequence
of multi-qubit controlled 2-qubit gates on (C2)⊗(m−2). Such controlled gates can be implemented efficiently on a
quantum computer using a few ancillary qubits. Therefore, we can approximate the Jones evaluations efficiently by a
quantum computer.

6. LOCALIZATION OF BRAID GROUP REPRESENTATIONS

The quantum circuit model is explicitly local: the n-qubit spaces are tensor powers (C2)⊗n and the n-qubit circuits
are composed of gates (e.g. promotions of SWAP, CNOT) that act non-trivially on just a few adjacent qubit spaces.

In contrast, the topological model relies upon gates that are not explicitly local, coming from representations of the
braid group. So far we have met several families of Bn representations: the local representations ρR associated with an
R-matrix, the Burau representations ρ and their reduced versions ρ̃ and the Jones representations (generic and special-
ized). In subsection 4.6.2 we gave a detailed version of Theorem 1.1, which is the main result of [6]. Consequently,
the quantum circuit model (hence a quantum Turing machine) can be efficiently simulated on a topological quantum
computer via certain level k Jones representations of the braid group.

The main theorem (i.e. Theorem 1.2) of [5] is a partial converse: the specialized Jones polynomial can be effi-
ciently approximated on the quantum circuit model (cf. Section 5). This is achieved by exploiting a hidden locality
in topological quantum field theory, which we now outline. Recall from Subsection 4.1.3 that the labels for the
Temperley-Lieb-Jones category at level k are L := {0, . . . ,k}. The Bn representation obtained from the standard faith-
ful T Ln(A)-module is H :=

⊕
j Hom( j,1⊗n). Here each direct summand H j = Hom( j,1⊗n) is an irreducible Bn

representation associated with a disk with n interior points marked with the anyon type 1 and the boundary labelled j.
Now we decompose our n-punctured disks into n−1 pairs of pants by making n−2 concentric circular cuts for each
boundary label j. The gluing and disjoint union axioms then show that

H=
⊕

(i1,...,in−1)∈Ln−1

Hom(1⊗2, i1)⊗Hom(1⊗ i1, i2)⊗·· ·⊗Hom(1⊗ in−2, in−1).

Here the boundary label is j = in−1. Now we set V =
⊕

(a,b,c) Hom(a⊗ b,c) and distribute ⊗ over ⊕ to realize H
inside V⊗(n−1). The complement H⊥ of H inside V⊗(n−1) is does not typically admit a braid group action. Alterna-
tively we can be slightly more efficient and take U =

⊕
(b,c) Hom(1⊗ b,c). The upshot is that the specialized Jones

representations of Bn can be realized inside a vector space of the form V⊗ f (n), but with Bn only acting on a certain
hidden subspace. One may employ the same technique for the Fibonacci representations.

Exercise 6.1. Set k = 2 and show that dim(V ) = 10, while dim(U) = 4. Observe that for the B3 representation we
have dim(V3,1) = 2 which is embedded into either V⊗2 or U⊗2 which has a very large complement.

This gross inefficiency motivates the following:

Question 6.2. When can a family of Bn representations be realized locally (uniformly for all n, and “on the nose”)?

Eventually we will restrict to unitary representations, but first we must make sense of what sort of families we are
interested in.

6.1. Sequences of Bn Representations. Notice that we have natural injective group homomorphisms ι : Bn→Bn+1
given by ι(σi) = σi, for 1 ≤ i ≤ n− 1 allowing us to identify Bn as a subgroup of Bn+1

3. Which families of rep-
resentations respect these identifications? For precision’s sake we phrase the following in terms of group algebras
[18]:

Definition 1. An indexed family of complex Bn-representations (ρn,Vn) is a sequence of braid representations if there
exist injective algebra homomorphisms ϕn : Cρn(Bn)→ Cρn+1(Bn+1) such that the following diagram commutes:

3Of course there are many less natural injective homomorphisms, for example σi 7→ (σn−i+1)
−1 can be verified as an injective homomorphism.
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CBn
ρn //

� _

ι

��

Cρn(Bn)� _

ϕn

��
CBn+1

ρn+1// Cρn+1(Bn+1)

Example 1. If R is a solution to the Yang-Baxter equation on a vector space V , then it is easy to see that ρn : CBn→
End(V⊗n) given by ρn(σi) = I⊗i−1

V ⊗ R⊗ I⊗n−i−1
V is a sequence of braid representations: take ϕn : End(V⊗n)→

End(V⊗n+1) to be ϕn( f ) = f ⊗ IV .

The Jones representations (specialized or not) and the (related) Fibonacci representations ρn,τ are sequences in this
sense. For example, for the generic Jones representation we have Cρn(Bn) = T Ln(A) and Cρn+1(Bn+1) = T Ln+1(A).
Letting ϕn(ui) = ui we see that the appropriate diagram commutes.

Example 2. The Burau (reduced or unreduced) representations do not form a sequence of Bn representations in our
sense. Indeed in the case where ρ̃ is irreducible, we have Cρ̃(Bn)∼= Mn−1(C) (for all n). Since there are no injective
homomorphisms from Mn−1(C) to Mn(C), the required map ϕn does not exist.

Exercise 6.3. Show that the standard permutation representations of Sn, lifted to Bn in the obvious way via (i i+1) 7→
σi is not a sequence in our sense.

Now we can describe what we mean by a localization of a sequence of braid group representations.

Definition 2. Suppose (ρn,Vn) is a sequence of braid representations. A localization of (ρn,Vn) is a braided vector
space (W,R) with R ∈ U(W⊗2) such that for all n ≥ 2 there exist injective algebra homomorphisms ψn : Cρ(Bn)→
End(W⊗n) satisfying ψn ◦ρ(b) = ρR(b) for b ∈ Bn.

This definition may seem a bit complicated at first, but encapsulates the notion of “on the nose” local realizations
of a sequence of Bn representations. From the point of view of quantum computation, we are trying to discover when
the singleton gate set {R} can simulate all braiding gates. In spite of the slightly mystifying definition, the idea is quite
simple: we want to find a single solution to the Yang-Baxter equation R on a vector space W so that

(1) For each n, (ρn,Vn) is a sub-representation of (ρR,W⊗n). Notice that we distinguish between equivalent
irreducible sub-representations of Vn: if ` isomorphic copies of some fixed irreducible U appears in Vn then
W⊗n must contain at least ` copies of U . This is a distinction at the level of algebras: C2 is not a faithful
representation of M2(C)⊕M2(C), but C2⊕C2 is.

(2) There are no irreducible Bn-subrepresentations of W⊗n that do not appear in Vn. Whereas the hidden locality
of [5] has a large non-computational space upon which the braid group does not act, we are asking that there
is no such axillary space.

Comparing with the property F conjecture, we obtain:

Conjecture 6.4. Suppose (V,R) is a unitary solution to the YBE such that R has finite (projective) order, with corre-
sponding Bn-representations (ρR,V⊗n). Then ρR(Bn) is a finite group (projectively).

If the words unitary or finite order are omitted Conjecture 6.4(a) is false, see [18] for examples.

6.2. Non-localizable representations. In the braided fusion category setting Conjecture 6.4 is closely related to an-
other fairly recent conjecture (see [19, Conjecture 6.6]). Braided fusion categories are naturally divided into two
classes according to the algebraic complexity of their fusion rules. In detail, one defines the Frobenius-Perron dimen-
sion FPdim(X) of an object X in a fusion category C to be the largest eigenvalue of the fusion matrix NX corresponding
to tensoring with X on the left. If FPdim(Xi) ∈N for all simple Xi then one says C is integral while if FPdim(Xi)

2 ∈N
for all simple Xi then C is said to be weakly integral. An object X in a braided fusion category C is said to have property
F if the Bn-representations on End(X⊗n) have finite image for all n. Then a version of Conjecture 6.6 of [19] states:
an object X has property F if, and only if, FPdim(X)2 ∈N. Some recent progress towards this conjecture can be found
in [16, 17] and further evidence can be found in [14, 13]. Combining with Conjecture 6.4 we make the following:

Conjecture 6.5. Let X be a simple object in a braided fusion category C. The representations (ρX ,End(X⊗n)) are
localizable if, and only if, FPdim(X)2 ∈ N.
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The main result of this section is to indicate that the specialized Jones representations are not localizable unless
r = 1,2,3,4 or 6. That is, the sequence of representations coming from the Temperley-Lieb algebras at all other roots
of unity are not localizable. In the next section we will show the converse for r = 4 and r = 6, with the other cases
being trivial since the corresponding categories are pointed (and hence the representations are 1-dimensional).

To any sequence of multi-matrix algebras S :=C=A1⊂ ·· · ⊂A j ⊂A j+1⊂ ·· · with the same identity one associates
the Bratteli diagram which encodes the combinatorial structure of the inclusions. The Bratteli diagram for a pair
M ⊂ N of multi-matrix algebras is a bipartite digraph Γ encoding the decomposition of the simple N-modules into
simple M-modules, and the inclusion matrix G is the adjacency matrix of Γ. More precisely, if N ∼=

⊕t
j=1 End(Vj) and

M ∼=
⊕s

i=1 End(Wi) the inclusion matrix G is an s× t integer matrix with entries:

Gi, j = dimHomM(ResN
M Vj,Wi)

i.e. the multiplicity of Wi in the restriction of Vj to M. For an example, denote by Mn(C) the n×n matrices over C and
let N = M4(C)⊕M2(C) and M ∼= C⊕C⊕M2(C) embedded in N as matrices of the form:a 0 0

0 a 0
0 0 A

⊕(a 0
0 b

)
where a,b ∈ C and A ∈ M2(C). Let V1 and V2 be the simple 4- and 2-dimensional N-modules respectively, and W1,
W2 and W3 be the simple M-modules of dimension 1, 1 and 2. Then the Bratteli diagram and corresponding inclusion
matrix for M ⊂ N are:

W1

��   

W2

��

W3

vv
V1 V2

and 2 1
0 1
1 0

 .

The Bratteli diagram for the sequence S is the concatenation of the Bratteli diagrams for each pair (Ak,Ak+1), with
corresponding inclusion matrix Gk. We organize this graph into levels (or stories) corresponding to each algebra Ak so
that the Bratteli diagram (Ak−1,Ak) is placed above the vertices labelled by simple Ak-modules, and that of (Ak,Ak+1)
is placed below. Having fixed an order on the simple Ak-modules we record the corresponding dimensions in a vector
dk. Observe that dk+1 = GT

k dk.
Let us illustrate this for the Fibonacci theory corresponding to the colored TLJ-theory at A = ie2πi/20. Here we have

two labels 1 and τ as in subsection 4.2.5. Decomposing the simple T LJn(A) modules for this theory as T LJn−1(A)
modules for n = 1,2, . . . we have:

τ

�� ��
1

��

τ

�� ��
τ

�� ��

1

��
1 τ

For each n> 1, T LJn(A) has two simple modules: V1,n :=Hom(1,τ⊗n) and Vτ,n :=Hom(τ,τ⊗n). Moreover, Cρn(Bn)=
T LJn(A) so these are irreducible Bn-representations. Let us compute the inclusion matrices as above, ordering the
modules [V1,n,Vτ,n] in spite of the alternating arrangement of the Bratteli diagram. Since V1,n|Bn−1

∼= Vτ,n−1 and
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Vτ,n|Bn−1
∼= V1,n−1 ⊕Vτ,n−1 we have: are G = Gn =

(
0 1
1 1

)
for all n > 1. By computing powers of G one can

see that dim(V1,n) = fn−1 and dim(Vτ,n) = fn where f0 = 1, f1 = 1, f2 = 1, f3 = 2, . . . is the Fibonacci sequence.
Now suppose that we could find a Yang-Baxter matrix R on a space W of dimension d localizing the sequence of

Bn-representations (ρn,V1,n ⊕Vτ,n). Using the algebra injections ψn, the space W⊗n becomes a T LJn(A)-module
and hence W⊗n ∼= anV1,n ⊕ bnVτ,n as T LJn(A) (or Bn) modules with an ≥ 1, bn ≥ 1 multiplicities. Notice that
dn = an fn−1 + bn fn for all n > 1. We can use G to inductively express the multiplicities (an,bn). Indeed, since
restricting anV1,n⊕bnVτ,n to Bn−1 we get bnV1,n−1⊕ (an +bn)Vτ,n−1, we have G(an,bn)

T = (an−1,bn−1). Notice also
that G( fn−2, fn−1)

T = ( fn−1, fn). Thus the formula dn = an fn−1 +bn fn valid for all n > 1 gives us the two equations:
〈(an,bn),G( fn−2, fn−1)〉= dn and 〈G(an,bn),( fn−1, fn)〉= dn−1. But since GT = G we have

dn = 〈(an,bn),G( fn−2, fn−1) rangle = 〈G(an,bn),( fn−1, fn)〉= dn−1,

a contradiction. So the Fibonacci theory cannot be localized.
This may seem a bit ad hoc, but in fact this can be generalized whenever the Bratteli diagram for Cρn(Bn) ⊂

Cρn+1(Bn+1) is periodic of some period k. In this case there is a strictly positive integer-valued square matrix G that
describes the inclusion of Cρn(Bn) ⊂ Cρn+k(Bn+k). One then applies the the Perron-Frobenius theorem to see that
some vector of multiplicities bn is an eigenvector of G corresponding to the largest eigenvalue λ of G. This implies
that λ ∈ Z, since G and bn are integral, which often leads to a contradiction (see [18] for details).

6.3. Jones representation at levels 2 and 4. In this section we give explicit localizations for the Jones representations
at levels 2 and 4.

For the Ising theory (level 2) an explicit localization appears in [4]. The objects are 1,σ and ψ where FPdim(σ) =√
2 and FPdim(ψ) = 1. The Bratteli diagram is:

σ

�� ��
1

��

ψ

��
σ

and the matrix

−e−πi/4
√

2


1 0 0 1
0 1 −1 0
0 1 1 0
−1 0 0 1


gives an explicit localization (see [4, Section 5]).

At level 4 (A = ie−2πi/24), the categorical model is a rank 5 category with simple objects 1,Z of dimension 1, Y of
dimension 2 and X ,X ′ of dimension

√
3. The fusion rules for this category are determined by:

X⊗X ∼= 1⊕Y, X⊗X ′ ∼= Z⊕Y(1)
X⊗Y ∼= X⊕X ′, Z⊗X ∼= X ′.(2)
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The Bratteli diagram (starting at level 1) is shown in below.

X

��   
1

��

Y

�� ��
X

�� ��

X ′

�� ��
1

��

Y

�� ��

Z

��
X

�� ��

X ′

�� ��
1 Y Z

We have T LJn(A)∼= End(X⊗n) for each n, where the isomorphism is induced by

gi↔ Id⊗i−1
X ⊗ cX ,X ⊗ Id⊗n−i−1

X ∈ End(X⊗n).

Here cX ,X is the (categorical) braiding on the object X . The irreducible sectors of T LJn(A) under this isomorphism are
the End(X⊗n)-modules Hn,W := Hom(W,X⊗n) where W is one of the 5 simple objects in C. Observe that for n even
W must be one of 1,Y or Z while for n odd W is either X or X ′. We have the following formulae for the dimensions of
these irreducible representations (for n odd):

dimHom(X ,X⊗n) =
3

n−1
2 +1
2

, dimHom(X ′,X⊗n) =
3

n−1
2 −1
2

,

dimHom(1,X⊗n+1) =
3

n−1
2 +1
2

, dimHom(Y,X⊗n+1) = 3
n−1

2 ,

dimHom(Z,X⊗n+1) =
3

n−1
2 −1
2

We present the explicit localization, referring the reader to [18] for a complete proof. Here ω = e2πi/3 is a 3rd root
of unity.

R = i√
3



ω 0 0 0 1 0 0 0 ω

0 ω 0 0 0 ω 1 0 0
0 0 ω ω2 0 0 0 ω2 0
0 0 ω2 ω 0 0 0 ω2 0
ω 0 0 0 ω 0 0 0 1
0 1 0 0 0 ω ω 0 0
0 ω 0 0 0 1 ω 0 0
0 0 ω2 ω2 0 0 0 ω 0
1 0 0 0 ω 0 0 0 ω


In fact we have a complete characterization of localizable (uncolored) Jones representations, verifying Conjecture

6.5 in these cases:

Theorem 6.6. The Jones representation at level k can be localized if and only if k ∈ {1,2,4}.

This should be compared with Theorem 1.1 from which it follows that the Jones representations are universal for
quantum computation precisely when the representations are not localizable.
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