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Classical Hall Effect---Maxwell’s Mistake

When electrons discovered?



These experimental data, available to the public 3 years

before the discovery of the quantum Hall effect, contain 

already all information of this new quantum effect so that 

everyone had the chance to make a discovery that led to the 

Nobel Prize in Physics 1985. The unexpected finding in the 

night of 4./5.2.1980 was the fact, that the plateau values in

the Hall resistance x-y are not influenced by the amount of 

localized electrons and can be expressed with high precision 

by the equation 𝑅𝐻 = 
ℎ

𝑒2

New Method for High-Accuracy Determination of 

the Fine-Structure Constant Based on Quantized 

Hall Resistance,  

K. v. Klitzing, G. Dorda and M. Pepper

Phys. Rev. Lett. 45, 494 (1980).

Birth of Integer Quantum Hall Effect



In 1998, Laughlin, Stormer, and Tsui

are awarded the Nobel Prize

“ for their discovery of a new form 

of quantum fluid with fractionally 

charged excitations.”

D. Tsui enclosed the distance between B=0 and the 

position of the last IQHE between two fingers of 

one hand and measured the position of the new 

feature in this unit.  He determined it to be three 

and exclaimed, “quarks!” H.  Stormer

The FQHE is fascinating for a long list of reasons, 

but it is important, in my view, primarily for one:  It 

established experimentally that both particles 

carrying an exact fraction of the electron charge e  

and powerful gauge forces between these particles, 

two central postulates of the standard model of 

elementary particles, can arise spontaneously as 

emergent phenomena.                        R. Laughlin

Fractional Quantum Hall Effect (FQHE)

D. C. Tsui, H. L. Stormer, and A. C. Gossard

Phys. Rev. Lett. 48, 1559 (1982)



How Many Fractions Have Been Observed?    100

1/3   1/5   1/7   1/9   2/11   2/13   2/15   2/17   3/19   5/21   6/23   6/25

2/3   2/5   2/7   2/9   3/11   3/13   4/15   3/17   4/19  10/21

4/3   3/5   3/7   4/9   4/11   4/13   7/15   4/17   5/19   

5/3   4/5   4/7   5/9   5/11   5/13   8/15   5/17   9/19

7/3   6/5   5/7   7/9   6/11   6/13  11/15  6/17  10/19

8/3   7/5   9/7  11/9  7/11   7/13  22/15  8/17   

8/5 10/7  13/9  8/11 10/13  23/15  9/17

11/5 12/7  25/9 16/11 20/13

12/5 16/7          17/11

19/7                                                              

m/5, m=14,16, 19                                                                    Pan et al (2008)

5/2

7/2

19/8

=
𝑁𝑒

𝑁

filling factor or fraction

𝑁𝑒 = # of electrons

𝑁 =# of flux quanta

How to model the quantum 

state(s) at a filling fraction?

What are the electrons doing 

at a plateau?



Three Answers

1. Art: electrons find “partners” and dance

2. Physics: patterns of long range entanglement

3. Math: (2+1)-TQFT or modular tensor category in nature



State and Energy

• At each moment, a physical system is in  

some state-a point in 𝑅𝑛 or a vector (≠ 0)
in some Hilbert space (a wave function).

• Each state has an energy.

• States of the lowest energy win: stable

How to find the lowest energy states

(ground states) and understand their

properties (excitations=responses)?



Classical Electrons on 𝑆2

Thomson’s Problem: 

Stable configurations of N-electrons on 𝑆2

minimizing total Coulomb potential energy

𝐸𝑖𝑗 =  𝑖≠𝑗
1

𝑑𝑖𝑗
,   𝑑𝑖𝑗=distance between 𝑖, 𝑗

What happens if 𝑁 → ∞?



Mathematical Quantum Systems

• A triple Q=(L, H, c), where L is a Hilbert space with a 
preferred basis c, and H an Hermitian matrix.  

Physically, H is the Hamiltonian. A non-zero vector in L

is a quantum state = wave function.

• Given a quantum system, find the ground state manifold: 

the eigenspace of H with the smallest eigenvalue:

L=⨁Vi, 

where Vi is the eigenspace of H with eigenvalue=energy

𝜆𝑖 , i = 0,1, …, in an increasing order.  

V0 is the ground state manifold with energy=𝜆0
and others are excited states. 

• A linear algebra problem that needs a quantum computer.



Quantum Hall Systems

N electrons in a plane bound to the interface between two 

semiconductors immersed in a perpendicular magnetic field

Fundamental Hamiltonian: 

H =1
𝑁 

1

2𝑚
[𝛻𝑗−q A(𝑧𝑗)]

2 +𝑉𝑏𝑔(𝑧𝑗)} + 𝑗<𝑘V(𝑧𝑗-𝑧𝑘)

Model Hamiltonian:   

H=1
𝑁

1

2𝑚
[𝛻𝑗−q A(𝑧𝑗)]

2 } + ?,  e.g.  𝑗<𝑘 (𝑧𝑗-𝑧𝑘), 𝑧𝑗 position of j-th electron

Phases are equivalence classes of ground 

state wave functions that have similar 

properties or no phase transitions as N

(N  1011 𝑐𝑚−2)



Electrons in Plane

• Technology made 2D possible

• Coulomb potential is translation invariant

• Pauli exclusion principle: spin degeneracy

• Spin deg. resolved by magnetic field

Quantum phases of matter at T~0.

Lorentz force:

𝐹 = 𝑞 𝑣 × 𝐵



Many Electrons in a Magnetic Field

• Landau solution: electron at position 𝑧,

single electron wave function 𝜓𝑚 = 𝑧
𝑚𝑒−

1

4
𝑧 2 ,

many electrons 𝑝(𝑧)𝑒−
1

4
𝑧 2

, 
𝒑 𝒛 = polynomial---describe how electrons

organize themselves under extreme conditions

• 𝜈 = 1, 𝑝 𝑧1, 𝑧2, … , 𝑧𝑁 = ∏𝑖<𝑗(zi − zj).

• p(z) for 𝜈 =
1

3
?



Laughlin State for =1/3
Laughlin 1983, Nobel 1998

N electrons at zi in ground state

Gaussian

𝟏/𝟑= i<j(zi-zj)
3 e-i|zi|

2/4



Laughlin Right?

Physical Predictions:

1. Elementary excitations have charge e/3 (Laughlin 83, Nobel 98)

2. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84)

Experiments:

Laughlin wave function is a good model



Enigma of =5/2 FQHE

R. Willett et al discovered =5/2 in1987

• Moore-Read State, Wen 1991

• Greiter-Wilczek-Wen 1991

• Nayak-Wilczek 1996

• Morf 1998

• …  

MR (maybe some variation) is a good trial state for 5/2                                        

• Bonderson, Gurarie, Nayak 2011,                                    Willett et al, PRL 59 1987

A landmark (physical) proof for the MR state

“Now we eagerly await the next great step: experimental

confirmation.” ---Wilczek

Experimental confirmation of 5/2:

charge e/4  , but  non-abelian anyons ???



Pfaffian State
G. Moore, N. Read 1991

Pfaffian state (MR w/  charge sector)

𝑷𝒇=Pf(1/(zi-zj)) i<j(zi-zj)
2  e-i|zi|

2/4

Pfaffian of a 2n2n anti-symmetric matrix M=(𝑎𝑖𝑗) is

𝑛 =n! Pf (M) d𝑥1d𝑥2…d𝑥2𝑛 if =𝑖<𝑗 𝑎𝑖𝑗 d𝑥𝑖 d𝑥𝑗

Physical Theorem:

Elementary excitations are non-abelian anyons, called Ising anyon 

……   Read 09



A Mathematical Classification
joint work with X.-G. Wen (MIT and PI)

• How to label UNIQUELY a fractional quantum 

Hall (FQH) state? 

A collection of model wave functions {Ψ𝑘}---

classification of FQH states.

• How to calculate topological properties of FQH 

states from wave functions?

E.g.  Statistics of anyons=unitary representations

of the braid groups.



Wave Function of Bosonic FQH State 

• Chirality:  

p(z1,…,zN) is a polynomial (Ignore Gaussian)

• Statistics:  

symmetric=anti-symmetric divided by 𝑖<𝑗(zi-zj)

• Translation invariant: 

p(z1+c,…,zN+c) = p(z1,…,zN)  for any c ∈ ℂ

• Filling fraction:

=lim
𝑁

𝑁
, where 𝑁 is max degree of any zi



Polynomial of Infinite Variables

• A sequence of translation invariant symmetric 

polynomials {Pk = 𝑝(𝑧1, … , 𝑧𝑁𝑘)} is called a 𝜈-

polynomial of infinite variables if there is a 

positive 𝜈 ∈ ℚ such that 𝑙𝑖𝑚𝑘→∞
𝑁𝑘

𝑑𝑘
= 𝜈, where 

𝑑𝑘 = maximum degree of 𝑧1 in P𝑘
• 𝑝(𝑧1, … , 𝑧𝑁𝑘) is a model wave function of 𝑁𝑘

electrons in a magnetic field.

• When a 𝜇-polynomial of infinite variables 

represents a FQH state?



Examples

Laughlin:  =1/q, 𝑁𝑘 = 𝑘, q=even

𝑷𝒌,𝟏/𝒒= i<j(zi-zj)
q

Pfaffian:   = 1/𝑞, 𝑁𝑘 = 2𝑘, q = odd

𝑷𝒌,𝑷𝒇=Pf(1/(zi-zj)) i<j(zi-zj)
q



General Constructions

Given 𝑓(𝑧1, … , 𝑧𝑁) polynomial

• Symmetrization:

𝑆 𝑓 𝑧1, … . , 𝑧𝑁 =  𝜎∈𝑆𝑁 𝑓(𝑧𝜎 1 , … , 𝑧𝜎 𝑁 )

is symmetric.  Note 𝑆 𝑧1 − 𝑧2 = 0.

• Center-of-mass substitution:

T 𝑓 𝑧1, … . , 𝑧𝑁 = 𝑓(𝑧1
(𝑐)

,…, 𝑧𝑁
(𝑐)

),

𝑧𝑖
(𝑐)
= zi −

z1+⋯+zN

N
.  Note T 𝑧1 + 𝑧2 = 0.



Pauli Exclusion Principle

• |Ψ𝑘|
2 is probability 

• The probability for two electrons at the same 

position is zero, so 𝑝(𝑧1, … , 𝑧𝑁𝑘) = 0 whenever 

𝑧𝑖 = 𝑧𝑗 for some 𝑖 ≠ 𝑗. But this is encoded in the 

Vandermonde factor ∏(𝑧𝑖 − 𝑧𝑗).

• How about more than 𝑎 > 2 electrons in the 

same position? 

Poly. 𝑝(𝑧1, … , 𝑧𝑁𝑘) “vanish” at certain powers

{Sa} when a particles are brought together



Pattern of Zeros=Quantified 

Generalized Pauli Exclusion Principle
Given poly. 𝑝(𝑧1, … , 𝑧𝑁𝑘):

𝑝 𝑧1, … , 𝑧𝑁𝑘 =  𝐼 𝑐𝐼𝑧
𝐼 , I = i1, … , in , 𝑧𝐼 = 𝑧1

𝑖1𝑧2
𝑖2 …𝑧𝑛

𝑖𝑛

Sa,k=min{ 𝑗=1
𝑎 𝑖𝑗}---minimal total degrees of a variables. 

If 𝑆𝑎,𝑘 = 𝑆𝑎 for all 𝑘 such that Nk ≥ 𝑎, then the sequence 

{Sa} of integers is called the pattern of zeros (POZ) of 

the polynomial of infinite variables.

Morally, {Sa}  model wave function and encode many 

topological properties of the FQH state.



CFT Examples

Laughlin:  Sa=qa(a-1)/2, =1/q, 𝑁𝑘 = 𝑘

𝑷𝟏/𝒒= i<j(zi-zj)
q

Pfaffian:   Sa=a(a-1)/2-[a/2], =1, 𝑁𝑘 = 2𝑘

𝑷𝟏/𝟐=Pf(1/(zi-zj)) i<j(zi-zj)

In a CFT,  if Ve is chosen as the electron operator and a 

conformal block as a W.F. 

If Va=(Ve)
a has scaling dimension ha,  then 

Sa=  ha-a h1



Quantum Hall State

• A quantum Hall state at filling fraction 𝜈 is 

a 𝜈-polynomial of infinite variables which 

satisfies the UFC and nCF conditions 

and whose POZ has even 𝚫𝟑.

• Classification:  

1) find all possible POZs of FQH states, 

2) realize them with polynomials,

3) when POZs are FQH states?



Fuse a-electrons

Given a-electrons at {𝑧𝑖 , 𝑖 = 1,… , 𝑎}

set 𝑧𝑖 = 𝑧1
𝑎 + 𝜆𝜉𝑖, 

where 𝑧1
𝑎 = ( 𝑖 𝑧𝑖)/𝑎 , and |𝜉𝑖|

2=1.

Imagine 𝑧𝑖 as vertices of a simplex,  then 𝑧1
𝑎

is the barycenter of the simplex.  As 𝜆 → 0, 

𝑧𝑖 → 𝑧1
𝑎 keeping the same shape.  

Sphere S2a-3 of {𝜉𝑖} parameterizes the shape 

of the a-electrons.



Unique Fusion Condition

Take a-variables zi fusing them to z1
(a)

The resulting polynomials (coefficients of 𝜆𝑘)         

pk z1
a, 𝜉1, … , 𝜉𝑎; 𝑧𝑎+1, … , 𝑧𝑛

depend on the shape {𝜉𝑖} ∈ 𝑆
2𝑎−3 of {zi}.

If the resulting polynomials of z1
(a),za+1,…,zn

for each k of pk(𝜉𝑖) span ≤1-dim vector 

space, the poly. satisfies UFC.



Derived Polynomials

Given 𝑝(𝑧1, … 𝑧𝑁),   if all variables are fused 

to new variables zi
(a) and UFC is satisfied, 

then the resulting new polynomial 𝑝(𝑧𝑖
𝑎) is 

well-defined,  and called the derived 

polynomial.

Derived polynomials for Laughlin states:

∏𝒂<𝒃∏𝒊,𝒋(𝒛𝒊
𝒂 − 𝒛𝒋

𝒃)𝒒𝒂𝒃∏𝒂∏𝒊<𝒋(𝒛𝒊
𝒂 − 𝒛𝒋

𝒂)𝒒𝒂
𝟐



n-cluster Form

If there exists an n>0 such that for any 𝑘, 𝑛|𝑁𝑘 ,
then the derived polynomial of n-clusters is 

∏𝒂<𝒃(𝒛𝒂
𝒏−𝒛𝒃

𝒏)𝑸

The poly. has the n-cluster form (nCF)

nCF reduces pattern of zeros to a finite problem:

Sa+kn=Sa+kSn+kma+k(k-1)mn/2, where 𝜈=n/m.



Pattern of Zeros Classification

Theorem (Wen-W.)  

If a 𝝂-polynomial of infinite variable {p(zi)} satisfy UFC and nCF for n, 

set m=Sn+1-Sn.  Then 

1) mn even, and =n/m

2) Sa+b-Sa-Sb  0

3) Sa+b+c-Sa+b-Sb+c-Sc+a +Sa +Sb +Sc  0

4) S2a even

5) 2Sn=0 mod n

6) Sa+kn=Sa+kSn+kma+k(k-1)mn/2

POZ is not complete data for FQH state.

Puzzle: Need 𝚫𝟑 =Sa+b+c-Sa+b-Sb+c-Sc+a +Sa +Sb +Sc to be EVEN!



What Are Polys of Infinite Variables?

• Represent topological phases of matter.

• Universal properties of topological phases 

of matter are encoded by TQFTs/modular 

tensor categories/CFTs, so polynomials of 

infinite variables are TQFTs/MTCs/CFTs.

How does this connection manifest, e.g. 

how to derive MTCs/CFTs from POZs?



Modular Tensor Category (MTC)

Topological Phase of Matter Topological Quantum Computation

(2+1)-TQFT

Topological phases of matter are TQFTs in Nature and hardware 

for hypothetical topological quantum computers.


