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Classical Hall Effect---Maxwell’'s Mistake

SomeriME during the last University year, while I was reading Max-
well’s Electricity and Magnetism in connection with Professor Rowland’s
lectures, my attention was particularly attracted by the following passage in
Vol. IT, p. 144

“It must be carefully remembered, that the mechanical force which
urges a conductor carrying a current across the lines of magnetic force, acts,
not on the electric current, but on the conductor which carries it. If the
conductor be a rotating disk or a fluid it will move in obedience to this force,
and this motion may or may not be accompanied with a change of position
of the electric current which it carries. But if the current itself be free to
choose any path through a fixed solid conductor or a network of wires, then,
when a constant magnetic force is made to act on the system, the path of the
current through the conductors is not permanently altered, but after certain
transient phenomena, called induction currents, have subsided, the distribu-
tion of the current will be found to be the same as if no magnetic force were
in action, The only force which acts on electric currents is electromotive
force, which must be distinguished from the mechanical force which is the
subject of this chapter.”

On a New Action of the Magnet on Electric Currents

Author(s): E. H. Hall

The results obtamed are as follows:
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When electrons discovered?

Source: American Journal of Mathematics, Vol. 2, No. 3 (Sep., 1879), pp. 287-292



Birth of Integer Quantum Hall Effect

Hall Effect

Edwin H. Hall (1879)
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New Method for High-Accuracy Determination of
the Fine-Structure Constant Based on Quantized
Hall Resistance,
K. v. Klitzing, G. Dorda and M. Pepper
Phys. Rev. Lett. 45, 494 (1980).

These experimental data, available to the public 3 years
before the discovery of the quantum Hall effect, contain
already all information of this new quantum effect so that
everyone had the chance to make a discovery that led to the
Nobel Prize in Physics 1985. The unexpected finding in the
night of 4./5.2.1980 was the fact, that the plateau values in
the Hall resistance x-y are not influenced by the amount of
localized electrons and can be expressed with high precision

by the equation R;; = é



Fractional Quantum Hall Effect (FQHE)

D. Tsui enclosed the distance between B=0 and the
position of the last IQHE between two fingers of
one hand and measured the position of the new
feature in this unit. He determined it to be three
and exclaimed, “quarks!” H. Stormer

The FQHE is fascinating for a long list of reasons,
but it is important, in my view, primarily for one: It
established experimentally that both particles
carrying an exact fraction of the electron charge e
and powerful gauge forces between these patrticles,
two central postulates of the standard model of
elementary particles, can arise spontaneously as
emergent phenomena. R. Laughlin
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In 1998, Laughlin, Stormer, and Tsui
are awarded the Nobel Prize

“for their discovery of a new form
of quantum fluid with fractionally
charged excitations.”

D. C. Tsui, H. L. Stormer, and A. C. Gossard
Phys. Rev. Lett. 48, 1559 (1982)



How Many Fractions Have Been Observed? ~100

filling factor or fraction
V= N, =# of electrons
0] Ng, =# of flux quanta

How to model the quantum
state(s) at a filling fraction?

What are the electrons doing
e at a plateau?

1/3 1/5 1/7 1/9 2/11 2/13 2/15 2/17 3/19 5/21 6/23 6/25
213 2/5 2/7 2/9 3/11 3/13 4/15 3/17 4/19 10/21

4/3 3/5 3/7 4/9 4/11 4/13 7/15 4/17 5/19

5/3 4/5 4/7 5/9 5/11 5/13 8/15 5/17 9/19

7/3 6/5 5/7 7/9 6/11 6/13 11/15 6/17 10/19

8/3 7/5 9/7 11/9 7/11 7/13 22/15 8/17

8/510/7 13/9 8/11 10/13 23/15 9/17 5/2
11/5 12/7 25/9 16/11 20/13 212
12/5 16/7 17/11

19/7 19/8

m/5, m=14,16, 19 Pan et al (2008)



Three Answers
1. Art: electrons find “partners” and dance
2. Physics: patterns of long range entanglement
3. Math: (2+1)-TQFT or modular tensor category in nature




State and Energy

* At each moment, a physical system is in
some state-a point in R™ or a vector (+ 0)
In some Hilbert space (a wave function).

« Each state has an energy.

« States of the lowest energy win: stable
How to find the lowest energy states
(ground states) and understand their
properties (excitations=responses)?



Classical Electrons on S?

Thomson’s Problem: -

Stable configurations of N-electrons on S*
minimizing total Coulomb potential energy

E;j = Ziiji , d;j=distance between i, j

tJ

What happens if N — oo?



Mathematical Quantum Systems

« Atriple Q=(L, H, c), where L is a Hilbert space with a
preferred basis ¢, and H an Hermitian matrix.

Physically, H is the Hamiltonian. A non-zero vector in L
IS a quantum state = wave function.
« Given a quantum system, find the ground state manifold:
the eigenspace of H with the smallest eigenvalue:
L=V,
where V; is the eigenspace of H with eigenvalue=energy
A;,i=0,1, ..., In an increasing order.
V, is the ground state manifold with energy=4,
and others are excited states.
« Alinear algebra problem that needs a quantum computer.



Quantum Hall Systems

N electrons in a plane bound to the interface between two
semiconductors immersed in a perpendicular magnetic field

aloms nmr field

Ve ey 0' T LT Q' LTS
AAARALLERERRRRRERte™  Phases are equivalence classes of ground
| ' | state wave functions that have similar
properties or no phase transitions as N—w
(N~ 10 cm™2)

Fundamental Hamiltonian:
1
H=x," 5 VA A(Z)] ? +Vpg(2)} + i<k V(2j-21)

Model Hamiltonian:
HZZlN{ﬁ [Vi—q A(Zj)] 21+ ?, e.g. Zjck S(Zj'Zk), Zj position of j-th electron



Electrons in Plane

Technology made 2D possible

Coulomb potential is translation invariant
Pauli exclusion principle: spin degeneracy
Spin deg. resolved by magnetic field

Magnetic field (B) LOrentZ fOrCe
SeSETIEIo
&<' orce = Bev
electron

Quantum phases of matter at T~0.



Many Electrons in a Magnetic Field

« Landau solution: electron at position z,

, : 11512
single electron wave function y,,, = z™e A7

22
many electrons p(z)e 4" |
p(z) = polynomial---describe how electrons

organize themselves under extreme conditions
o v=1p(z,2 .,25) = [licj(zi — 7). TL

* p(z) forv = é?




Laughlin State for v=1/3

Laughlin 1983, Nobel 1998

N electrons at z, in ground state

& Gaussian

\I"1/3= Hi<j (Zi_zj)3 e'Zi|Zi|2/4




Laughlin Right?
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Physical Predictions:

o 200

1. Elementary excitations have charge e/3 (Laughlin 83, Nobel 98)
2. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84)

Experiments:

Laughlin wave function is a good model



Enigma of v=5/2 FQHE

R. Willett et al discovered v=5/2 in1987
 Moore-Read State, Wen 1991
» Greiter-Wilczek-Wen 1991
« Nayak-Wilczek 1996
 Morf 1998

R, (hfe)

R, (k)

MR (maybe some variation) is a good trial state for 5/2
« Bonderson, Gurarie, Nayak 2011, Willett et al, PRL 59 1987
A landmark (physical) proof for the MR state
“‘Now we eagerly await the next great step: experimental

confirmation.” ---Wilczek
Experimental confirmation of 5/2:
charge e/4 V', but non-abelian anyons ???



Pfafflan State

G. Moore, N. Read 1991

Pfaffian state (MR w/ ~ charge sector)

“I’Pf: Pf(ll(Z,-ZJ)) Hi<j (Zi-zj)2 e'Zi|Zi|2/4

Pfaffian of a 2nx2n anti-symmetric matrix M=(a;;) is

o™ =n! Pf (M) dx!Adx?A...Adx?" if 0=2;.; a;; dx'A dx/
j Gij

Physical Theorem:

Elementary excitations are non-abelian anyons, called Ising anyon o
...... Read 09



A Mathematical Classification
joint work with X.-G. Wen (MIT and PI)

 How to label UNIQUELY a fractional quantum
Hall (FQH) state?

A collection of model wave functions {¥, }---
classification of FQH states.

* How to calculate topological properties of FQH
states from wave functions?

E.g. Statistics of anyons=unitary representations
of the braid groups.



Wave Function of Bosonic FQH State

Chirality:

P(z,,...,Zy) 1S @ polynomial (Ignore Gaussian)
Statistics:

symmetric=anti-symmetric divided by I1;;(z;-z))
Translation invariant:

pP(z,*C,...,Zy*C) = p(Z4,...,Zy) foranyc € C
Filling fraction:

v=lim i, where N<|> IS max degree of any z,

"0



Polynomial of Infinite Variables

« A seqguence of translation invariant symmetric
polynomials {Px = p(z, ..., zy,)} Is called a v-
polynomial of infinite variables if there is a

.. ] N
nositive v € Q such that limy_ d—" = v, where
k

d; = maximum degree of z, in P
e p(zy,...,2y,) IS @ model wave function of N
electrons in a magnetic field.

* When a u-polynomial of infinite variables
represents a FQH state?



Examples

Laughlin: v=1/q, N, = k, g=even

Py 1/q= I1ig(zi-2)"

Pfafflan: v=1/q, N;, = 2k,q = odd

Py ps=Pf(1/(z;-2))) 11;(zi-2))°



General Constructions

Given f(zy, ..., zy) polynomial
Symmetrization:

S(f)(zl: ----:ZN) — ZO’ESN f(Za(l)» ""ZO'(N))
is symmetric. Note S(z; — z,) = 0.
Center-of-mass substitution:

(f)(z4, ..., zy) = f(zfc),..., ZIE,C)),

Zl-(C) = Zj Zl+.l.\i+ZN. Note T(Zl + Zz) = 0.




Pauli Exclusion Principle

o |W,|? is probability

* The probability for two electrons at the same
position is zero, so p(zy, ..., zy,) = 0 whenever
z; = z; for some i # j. Butthis is encoded in the
Vandermonde factor [](z; — z;).

« How about more than a > 2 electrons in the
same position?

Poly. {p(zy, ..., zy,)} "vanish” at certain powers
{S.} when a particles are brought together



Pattern of Zeros=Quantified
Generalized Pauli Exclusion Principle
Given poly. {p(zy, ..., 2n,)}:

p(z,, ...,ZNk) =Y,;¢z 1= (ig, ., ip), 2" = 2,"2,7 ... 2,,

S, =min{};7-,i;}---minimal total degrees of a variables.

If Sq x = S, for all k such that Ny > a, then the sequence

{S,} of integers is called the pattern of zeros (POZ) of
the polynomial of infinite variables.

Morally, {S_}  model wave function and encode many
topological properties of the FQH state.



CFT Examples

Laughlin: S_=qa(a-1)/2, v=1/q, N, =k
Py/q= 11i(zi-2))

Pfafflan: S_=a(a-1)/2-[a/2], v=1, N}, = 2k
Py ,,=Pf(1/(z-z))) 11;(zi-Z))

In a CFT, if V, Is chosen as the electron operator and a
conformal block as a W.F.

If V_=(V.)2 has scaling dimension h_, then
S,= h,-ah;



Quantum Hall State

A quantum Hall state at filling fraction v Is
a v-polynomial of infinite variables which
satisfies the UFC and nCF conditions
and whose POZ has even Aj.

 Classification:
1) find all possible POZs of FQH states,
2) realize them with polynomials,
3) when POZs are FQH states?



Fuse a-electrons

Given a-electrons at {z;,i = 1,.

set z; = z{ + 1¢;,
where z{* = (3;;z;)/a , and 2

Imagine z; as vertices of a sim
IS the barycenter of the simp

., a}

§il°=1.
nlex, then zf

ex. As1 - 0,

z; — z{ keeping the same shape.
Sphere S?%&-3 of {¢;} parameterizes the shape

of the a-electrons.



Unigue Fusion Condition

"ake a-variables z, fusing them to z,®

"he resulting polynomials (coefficients of A%)

pk(Z?, Eli ) fa; Za+1s Zn)
depend on the shape {¢;} € §%473 of {z}.

If the resulting polynomials of z,®,z_,,,...,z,

for each k of pr(&;) span <1-dim vector
space, the poly. satisfies UFC.



Derived Polynomials

Given p(z4, ... zy), If all variables are fused
to new variables z® and UFC is satisfied,
then the resulting new polynomial p(z*) is
well-defined, and called the derived
polynomial.

Derived polynomials for Laughlin states:

b 2
[Ta<nllij(zf — 27)1% ] li<j(2f — 20)1°
j j



n-cluster Form

If there exists an n>0 such that for any k,n|N,,
then the derived polynomial of n-clusters is

Ha<b (ZZ_ZZ)Q

The poly. has the n-cluster form (nCF)
NCF reduces pattern of zeros to a finite problem:
S.kn=5,tkS, +tkma+k(k-1)mn/2, where v=n/m.



Pattern of Zeros Classification

Theorem (Wen-W.)
If a v-polynomial of infinite variable {p(z,)} satisfy UFC and nCF for n,
set m=S,,,-S,. Then

1) mn even, and v=n/m

2) S,.,-S,-5,20

3) Sa+b+c'Sa+b'Sb+c'Sc+a +Sa +Sb +Sc 20
4) S,  even

5) 25,=0 mod n

6) S, =S, kS, tkma+k(k-1)mn/2

POZ is not complete data for FQH state.
Puzzle: Need Az =S, .c-Saib=SpicScra 1S4 7S, +S. to be EVEN!



What Are Polys of Infinite Variables?

* Represent topological phases of matter.

* Universal properties of topological phases
of matter are encoded by TQFTs/modular
tensor categories/CFTs, so polynomials of
Infinite variables are TQFTs/MTCs/CFTs.

How does this connection manifest, e.g.
how to derive MTCs/CFTs from POZs?



(2+1)-TQFT

Modular Tensor Category (MTC)

N\

Topological Phase of Matter ===p TOpological Quantum Computation

Topological phases of matter are TQFTs in Nature and hardware
for hypothetical topological quantum computers.



