Publications
and
Preprints of Eric C. Rowell
Back to homepage. Clicking on
the journal title will take you to the published version of the paper,
(via doi) which is optimal. The papers are ordered by submission
date, not publication date.
[60]. G-crossed braided zesting with C. Delaney, C. Galindo, J. Plavnik and Q. Zhang
[59]. Braids, Motions and Topological Quantum Computing
[58]. Reconstruction of modular data from SL(2, Z) representations with S.-H. Ng, Z. Wang and X.-G. Wen
[57].
Reconstructing Braided Subcategories of SU(N)k with
Z. Feng and S. Ming
[56.] Classification of spin-chain braid representations with P. Martin
[55.]
The Witt classes of SO(2r)2r with
Y. Ruan and Y. Wang,
to
appear in Comm. Alg.
(07/21) arXiv:2107.06746.
[54.] Generalisations of Hecke Algebras from Loop Braid Groups with C. Damiani and P. Martin
to
appear in Pacific J. Math.
(08/20) arXiv:2008.04840.
[53.] Braided zesting and applications. with C. Delaney, C. Galindo, J. Plavnik and Q. Zhang
Comm. Math. Phys. 386, 1--55 (2021)[52.] Higher central charges and Witt groups. with S.-H. Ng, Y. Wang and Q. Zhang
Adv. Math.
202 (2022) (a general audience
MSRI highlights article on this work)
[51.] Symplectic level-rank duality via tensor categories with V. Ostrik and M. Sun
J.
Lie Theory 30 (2020), no. 4, 909--924.
[50.] On realizing modular data. with P. Bonderson and Z. Wang
J.
Math. Sci. Univ. Tokyo 27 (2020), no. 1, 65--79.
[49.] [On] Classification of super-modular categories of rank 8. with P. Bruillard, J. Plavnik and Q. Zhang.
J.
Algebra Appl. 20 (2021), no. 1, Paper No. 2140017, 36 pp.
[48.] Braid group representations from twisted tensor products of algebras with A. Kimball, P. Gustafson and Q. Zhang.
Peking
Math. J. 3 (2020), no. 2, 103--130.
[47.] Rank-finiteness for G-crossed braided fusion categories. with C. Jones, S. Morrison and D. Nikshych
Transform.
Groups 26 (2021), no. 3, 915--927
[46.] Integral metaplectic modular categories. with A. Deaton, P. Gustafson, L. Mavrakis, S. Poltoratski, S. Timmerman, B. Warren, and Q. Zhang
J.
Knot Theory Ramifications 29 (2020), no. 5, 2050032, 9
pp
[45.] Representations of the Necklace Braid Group: Topological and Combinatorial Approaches. with A. Bullivant, A. Kimball and P. Martin
Comm.
Math. Phys. 375 (2020), no. 2, 1223--1247.
[44.]
Metaplectic
categories, gauging and property F. with
P.
Gustafson and Y. Ruan
Tohoku
Math. J.(2) 72 (2020), no. 3, 411--424.
(8/18)
arXiv:1808.00698.
[43.] Review of: Tensor categories by Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik.
Bull. Amer. Math. Soc. 55, (2018), no. 4, 545-551.
(5/18) DOI[42.] On invariants of modular categories beyond modular data. with P. Bonderson, C. Delaney, C. Galindo, A. Tran and Z. Wang
J. Pure Appl. Algebra 223
(2019), no. 9, 4065--4088
[41.] On acyclic anyon models. with C. Galindo and Z. Wang
Quantum
Inf. Proc. 17
(2018), 245.
[40.] Dimension as a quantum statistic and the classification of metaplectic categories. with P. Bruillard, P. Gustafson and J. Plavnik
in Topological phases of matter and
quantum computation, 89--113, Contemp. Math., 747, Amer. Math. Soc.,
[Providence], RI, [2020]
[39.] Mathematics of topological quantum computing. with Z. Wang.
Bull.
Amer. Math. Soc. 55,
(2018), no. 2, 183--238.
[38.] Classification of super-modular categories by rank. with P. Bruillard, C. Galindo, S.-H. Ng, J. Plavnik and Z. Wang.
Algebr. Represent. Theory 23
(2020), no. 3, 795--809.
(5/17)
arXiv:1705.05293
[37.] Congruence subgroups and super-modular categories. with P. Bonderson, Z. Wang and Q. Zhang.
Pacific
J. Math. 296
(2018), No. 2, 257--270.
(4/17) arXiv:1704.02041
[36.] Modular Categories of Dimension p^3m with m Square-Free. with Paul Bruillard and Julia Plavnik.
Proc.
Amer. Math. Soc. 147
(2019) no. 1, 21-34.
(9/16) arXiv:1609.04896
[35.] Local unitary representations of the braid group and their applications to quantum computing. with Colleen Delaney and Zhenghan Wang.
Rev. Colombiana Mat.
50 (2016) no. 2, 207-272.
(3/16)
arXiv:1604.06429
[34.]
Ferminonic
modular categories and the 16-fold way. with Paul Bruillard, Cesar
Galindo,
Tobias Hagge, Siu-Hung Ng, Julia Plavnik and Zhenghan Wang
J. Math. Phys. 58
(2017), 041704.
(3/16)
ArXiv:1603.09294
[33.] Classification of metaplectic modular categories with Eddy Ardonne, Meng Cheng and Zhenghan Wang
Journal
of
Algebra 466 (2016)
141-146.
(1/16) ArXiv:1601.05460
[32.] An invitation to the mathematics of topological quantum computation
Journal
of
Physics: Conference Series 698
(2016) 012012.
(12/15)
PDF | arXiv:1601.05288
[31.] Degeneracy and non-abelian statistics with Z. Wang.
Phys. Rev. A
93 (2016), 030102(R)
(8/15)
arXiv:1508.04793.
[30.] Low-dimensional representations of the three component loop braid group with P. Bruillard, L. Chang, S.-M. Hong, J. Y. Plavnik, M. Y. Sun
J.
Math. Phys. 56,
no. 11 (2015), 11707.
(8/15)
arXiv:1508.00005
[29.] On classification of modular categories by rank with Paul Bruillard, Siu-Hung Ng and Zhenghan Wang
Int. Math. Res. Not.
(2016)
2016
no.
24,
7546-7588.
(7/15) PDF| arXiv:1507.05139
[28.] On Local Representations of the Loop Braid Group with Zoltan Kadar, Paul Martin and Zhenghan Wang
Glasgow Math. J. 59, no 2 (2017) 359-378.
(11/14) arXiv:1411.3768[27.] On the Classification of Weakly Integral Modular Categories with Paul Bruillard, Cesar Galindo, Siu-Hung Ng, Julia Plavnik and Zhenghan Wang
J. Pure Appl. Algebra 220, no. 6 (2016), 2364-2388
(11/14) arXiv:1411.2313
[26.] Parameter-dependent Gaussian (z,N)-generalized Yang-Baxter operators
Quantum
Inf.
Comp.
16 (2016), no. 1&2,
0105-0114.
(10/14) arXiv:1410.8863
[25.]
SO(N)2 Braid Group Representations are Gaussian
with Hans Wenzl
Quantum Topol.
8 (2017) no. 1, 1-33.
(1/14)
arXiv:1401.5329
[24.]
Braid
Representations from Unitary Braided Vector Spaces with
Cesar
Galindo
J. Math. Phys. 55,
061702 (2014)
(12/13)
arXiv:1312.5557
[23.]
Rank-Finiteness
for Modular Categories with
Paul
Bruillard, Siu-Hung Ng and Zhenghan Wang
J. Amer. Math. Soc.
29 (2016) no. 3, 857-881.
(3/15)
arXiv:1310.7050
[22.] Classification of integral modular categories of Frobenius-Perron dimension pq^4 and p^2q^2 with Paul Bruillard, Cesar Galindo, Seung-Moon Hong, Yevgenia Kashina, Deepak Naidu, Sonia Natale, Julia Yael Plavnik
Canad. Math.
Bull. (2014) 57
721-734.
(3/13)
arXiv:1303.4748
[21.] Generalized and quasi-localization of braid group representations with Cesar Galindo and Seung-Moon Hong
Int. Math. Res. Not.
2013
no.
3,
693-731.
(5/11) PDF | arXiv:1105.5048
[20.]
Modular
categories, integrality and Egyptian fractions with
Paul
Bruillard
Proc.
Amer.
Math.
Soc. 140
(2012),
1141-1150
(12/10) PDF| arXiv:1012.0814
[19.] Localization of unitary braid group
representations with
Zhenghan Wang.
Comm. Math. Phys. 11 311 (2012) no. 3 595--615.
(9/10) PDF | arXiv:1009.0241
[18.] A quaternionic braid representation (after Goldschmidt and Jones).
Quantum Topol. 2 (2011), 173--182.
(6/10)PDF
|
arXiv:1006.4808
[17.] Braid representations from quantum groups of exceptional Lie
type.
Rev. Un. Mat. Argentina
51 (2010) no. 1, 165-175.
(3/10) PDF| arXiv:1004.4133
[16.]
On
the classification of the Grothendieck semirings of non-self-dual
modular categories with
Seung.-Moon
Hong and an appendix by Victor Ostrik.
J.
Algebra 324 (2010) 1000-1015.
(7/09)
PDF | arXiv:0907.1051
| Maple 13
worksheet1 worksheet2 worksheet3 (.mws files).|
Output worksheet1 worksheet2
worksheet3 (.pdf files).
[15.]
A
finiteness property for braided fusion categories
with Deepak Naidu.
Algebr.
Represent. Theory 15 (2011) no. 5, 837-855.
(3/09)
PDF | arXiv:0903.4157
[14.]
Finite
linear quotients of B3 of low dimension with
Imre
Tuba.
J. Knot Theory
Ramifications 19
(2010)
no.
5 587-600.
[13.]
Unitary
braid representations with finite image
with Michael
J. Larsen.
Algebr. Geom.
Topol. 8 (2008) no. 4, 2063-2079.
[12.]
Two
paradigms for topological quantum computation.
Contemp.
Math.
482,
pp. 165-178, AMS, Providence, RI, 2009.
Full
paper (3/08) arXiv:math.QA 0803.1258
[11.] On classification of modular tensor categories with
Richard Stong and Zhenghan Wang.
Comm. Math.
Phys. 292 (2009) no. 2, 343- 389.
Full
paper (12/07)
PDF | arXiv: math.QA
0712.1377
[10.]
On
exotic modular tensor categories with
Seung-moon
Hong and Zhenghan Wang.
Commun.
Contemp. Math.
10 (2008), suppl. 1, 1049-1074.
Full paper (10/07): arXiv: math.GT 0710.5761
[9.]
Unitarizablity
of premodular categories
J. Pure Appl.
Algebra. 212
(2008),
no.
8 1878-1887.
Full paper (10/07): arXiv: math.QA 0710.1621
[8.]
Extraspecial
Two-Groups,
Generalized Yang-Baxter Equations and Braiding Quantum Gates. with
Yong
Zhang, Yong-Shi Wu,
and Mo-Lin
Ge.
Quantum
Inf.
Comput. 10
(2010)
no.
7 & 8 0685-0702.
Full paper (4/10) PDF:
arXiv: quant-ph/0706.1761v2
[7].
Braid representations from twisted quantum doubles of
finite groups with Pavel
Etingof and Sarah Witherspoon.
Pacific
J. Math. 234 no. 1 (2008) 33-42.
Full paper (3/07):
arXiv: math.QA/0703274
[6].
An
algebra-level version of a link-polynomial identity of Lickorish with
Michael Larsen.
Math. Proc.
Cambridge Philos. Soc. 144 (2008), no. 3,
623-638.
Full paper (5/06): arXiv:
math.QA/0605455
[5].
The
N-eigenvalue problem and two applications with
Michael Larsen
and Zhenghan Wang.
Int. Math. Res.
Not. 2005 no. 64 (2005) 3987-4018.
Full
paper
(11/05) PDF | arXiv
math.RT/0506025
[4].
Extraspecial
2-groups and images of braid group representations with
Jennifer
(Franko)
Vasquez and Zhenghan
Wang.
J. Knot Theory
Ramifications 15 no. 4 (2006) 413-428.
Full
paper
(3/05): PDF | arXiv
math.RT/0503435
[3].
From quantum groups to unitary modular tensor categories
Contemp. Math. 413, 215-230, Amer. Math. Soc,.
Providence, RI 2006.
Full
paper
(1/06): PDF | arXiv
math.QA/0503226
[2].
A
note on tensor categories of Lie type
E9
Journal
of Algebra 284 no. 1 (2005), 296-309.
Full
paper
(6/7/04): PDF | arXiv:math.RT/0406122
[1].
On
a family on non-unitarizable ribbon categories
Mathematische
Zeitschrift 250 no. 4 (2005), 745-774.
Full
paper
(3/12/04): PDF | arXiv:
math.QA/0403217
Thesis
and
other preprints:
Generating
functions
for ranks of pre-modular categories.
Subsumed.
Abstract:
We derive generating functions for the ranks of pre-modular categories
associated with quantum groups at roots of unity.
Full
paper
(8/05): arXiv
math.QA/0509457
On
tensor categories arising from quantum groups and BMW-algebras at
odd roots of unity.
PhD
Thesis,
University of California, San Diego, 2003.
Abstract:
Most of the results in my thesis are published in [1].
Full
paper
(5/29/03): PDF
Last
updated
after 01/19