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Abstract. The extended Cuntz–Pimsner algebra E(H), introduced by Pimsner,

is constructed from a Hilbert B,B–bimodule H over a C∗–algebra B. In this paper

we investigate the Haagerup invariant Λ(·) for these algebras, the main result being

that

Λ(E(H)) = Λ(B)

when H is full over B. In particular, E(H) has the completely bounded approxi-

mation property if and only if the same is true for B.

1. Introduction

The Haagerup invariant for a C∗–algebra A is defined to be the smallest constant

Λ(A) for which there exists a net {φα : A→ A}α∈N of finite rank maps satisfying

lim
α
‖φα(x)− x‖ = 0, x ∈ A, and ‖φα‖cb ≤ Λ(A), α ∈ N. (1)

If no such net exists then Λ(A) is defined to be ∞, while if Λ(A) <∞ then A is said

to have the completely bounded approximation property (CBAP). The definition of

Λ(A) arose from [12, 8]. In the first of these it was shown that C∗r (F2), the reduced

C∗–algebra of the free group on two generators, has such a net of contractions, and a

stronger result using complete contractions was obtained in the second paper. Sub-

sequently, many examples of different values of Λ(·) were given in [6]. An interesting

problem is to investigate the behavior of Λ(·) under the standard constructions of

C∗–algebra theory. In [19], the formula Λ(A1 ⊗ A2) = Λ(A1)Λ(A2) was established

for the minimal tensor product, while Λ(A oα G) = Λ(A) was proved for discrete

amenable groups in [20] and for general amenable groups in [16]. Our objective in

this paper is to show that Λ(B) = Λ(E(H)), where E(H) is the extended Cuntz–

Pimsner algebra arising from a Hilbert B,B–bimodule over a C∗–algebra B, [17].
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The C∗–algebras E(H) appear in several areas of operator algebras, notably in the

work of Muhly and Solel, [14, 15], and in work of the first author with Shlyakhtenko,

[10]. It was shown in the latter paper that E(H) is exact if and only if B is exact.

Since exactness is a well known consequence of the CBAP, (see, for example, the

argument in [16, Theorem 3.1(vii)]), this suggested the connection between Λ(E(H))

and Λ(B). (See also the remarks at the end of this paper.) We now review briefly

the definition of E(H).

A right Hilbert B–module H has a B–valued inner product 〈·, ·〉B, conjugate linear

and linear respectively in the first and second variables, and is said to be full if

{〈h1, h2〉B : h1, h2 ∈ H} generates B. The C∗–algebra L(H) consists of the B–

linear operators T : H → H for which there is a B–linear T ∗ : H → H satisfying

〈Th1, h2〉B = 〈h1, T
∗h2〉B, and operators in L(H) are called adjointable. The C∗–

algebra L(H) contains the closed ideal K(H), that is generated by the maps of the

form

θx,y(h) = x〈y, h〉B, h ∈ H,

for arbitrary pairs x, y ∈ H, [13]. If there is an injective ∗–homomorphism ρ : B →
L(H), then there is a left action of B on H by (b, h) 7→ ρ(b)h, and we say that H

is a B,B–bimodule. The full Fock space F(H) is defined to be B ⊕
⊕

n≥1H
(⊗B)n,

where H(⊗B)n is the n–fold tensor product H ⊗B H ⊗B · · · ⊗B H, which is also a

Hilbert B,B–bimodule. For h ∈ H, the operator `(h) : F(H) → F(H) is defined on

generators by

`(h)h1 ⊗ · · · ⊗ hn = h⊗ h1 ⊗ · · · ⊗ hn, hi ∈ H,

`(h)b = hb. b ∈ B.

These are bounded adjointable operators on F(H) and satisfy

`(h1)
∗`(h2) = 〈h1, h2〉B, hi ∈ H,

b1`(h)b2 = `(b1hb2), bi ∈ B.

Then E(H) is the C∗–algebra generated in L(H) by {`(h) : h ∈ H}, and was intro-

duced by Pimsner in [17].

Our approach to investigating Λ(E(H)) follows the methods of [10]. There, a

sequence of operations was given to construct E(H) from B in such a way that

exactness was preserved at each step. Here we show that the Haagerup invariant is
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preserved, with the main technical device being Theorem 1 concerning quotients of

C∗–algebras.

2. Results

For a short exact sequence

0 → J → A→ A/J → 0

of C∗–algebras, we cannot expect, in general, a relationship between Λ(A), Λ(J) and

Λ(A/J), [16, Section 5]. However, our first result shows that these quantities are

closely linked when the short exact sequence splits. The proof requires the notion of

a quasi–central approximate identity for a closed ideal J contained in a C∗–algebra

A, introduced in [1, 3]. This is an approximate identity {eα}α∈N , 0 ≤ eα ≤ 1, which

has the additional property of asymptotically commuting with the elements of A in

the sense that

lim
α
‖eαx− xeα‖ = 0, x ∈ A.

Such approximate identities always exist, [1, 3].

Theorem 1. Let J be an ideal in a C∗–algebra A, let π : A→ A/J be the quotient

map, and suppose that there exists a completely contractive map ρ : A/J → A such

that πρ = idA/J . Then

Λ(A) = max{Λ(J),Λ(A/J)}.

Proof. Fix a1, . . . , an ∈ A, ‖ai‖ ≤ 1, and fix ε > 0. We will construct a finite rank map

γ : A→ A such that ‖γ(ai)− ai‖ < ε, 1 ≤ i ≤ n, and ‖γ‖cb ≤ max{Λ(J),Λ(A/J)}.
This will then prove “≤” in the equality.

Fix δ > 0, to be chosen later. Let {eα}α∈N be a quasi-central approximate identity

for J satisfying 0 ≤ eα ≤ 1. By definition of Λ(A/J), there exists a finite rank map

ψ : A/J → A/J , ‖ψ‖cb ≤ Λ(A/J), such that

‖ψ(π(ai))− π(ai)‖ < δ

for 1 ≤ i ≤ n. Define a finite rank map ψ̃ : A→ A by

ψ̃(x) = ρ(ψ(π(x))), x ∈ A.
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Clearly ‖ψ̃‖cb ≤ Λ(A/J) and, since π(ψ̃(ai)) = ψ(π(ai)), we may choose elements

ji ∈ J such that

‖ψ̃(ai)− (ai + ji)‖ < δ, 1 ≤ i ≤ n. (2)

Now {eα}α∈N is an approximate identity for J so, for each α ∈ N , we may choose

β(α) ∈ N , β(α) > α, such that

‖eβ(α)e
1/2
α − e1/2α ‖ < δ. (3)

Note that taking adjoints in (3) gives

‖e1/2α eβ(α) − e1/2α ‖ < δ (4)

also. For each α ∈ N , choose a finite rank map φα : J → J , ‖φα‖cb ≤ Λ(J) such that

‖φα(eβ(α)aieβ(α))− eβ(α)aieβ(α)‖ < δ, 1 ≤ i ≤ n. (5)

Then define φ̃α : A→ A by

φ̃α(x) = φα(eβ(α)xeβ(α)), x ∈ A.

These maps are finite rank, and satisfy ‖φ̃α‖cb ≤ Λ(J). Then, for each α ∈ N , define

γα : A→ A by

γα(x) = e1/2α φ̃α(x)e
1/2
α + (1− eα)

1/2ψ̃(x)(1− eα)
1/2, x ∈ A. (6)

Each of these maps can be expressed as a matrix product

γα(x) = (e1/2α , (1− eα)
1/2)

(
φ̃α(x) 0

0 ψ̃(x)

)(
e
1/2
α

(1− eα)
1/2

)
from which it is clear that ‖γα‖cb ≤ max{Λ(J),Λ(A/J)}. It remains to be shown

that

‖γα(ai)− ai‖ < ε, 1 ≤ i ≤ n, (7)

for a sufficiently large choice of α ∈ N . We will estimate the two terms on the right

hand side of (6) separately, when x is replaced by ai.

The term e
1/2
α φ̃α(ai)e

1/2
α equals, by definition, e

1/2
α φα(eβ(α)aieβ(α))e

1/2
α so, from (5),

‖e1/2α φ̃α(ai)e
1/2
α − e1/2α eβ(α)aieβ(α)e

1/2
α ‖ < δ

for 1 ≤ i ≤ n. A simple triangle inequality argument, using (3) and (4), then shows

that

‖e1/2α φ̃α(ai)e
1/2
α − e1/2α aie

1/2
α ‖ < 3δ, (8)
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for 1 ≤ i ≤ n.

The second term, (1− eα)
1/2ψ̃(ai)(1− eα)

1/2, in (6) is within δ of (1− eα)
1/2(ai +

ji)(1− eα)
1/2, from (2). Combining this estimate with (6) and (8) gives

‖γα(ai)−e1/2α aie
1/2
α −(1−eα)1/2ai(1−eα)1/2‖ ≤ ‖(1−eα)1/2ji(1−eα)1/2‖+4δ, 1 ≤ i ≤ n.

Thus

‖γα(ai)− ai‖ ≤ ‖ai − e1/2α aie
1/2
α − (1− eα)

1/2ai(1− eα)
1/2‖

+ ‖(1− eα)
1/2ji(1− eα)

1/2‖+ 4δ, 1 ≤ i ≤ n. (9)

Using the Stone–Weierstrass Theorem and functional calculus to approximate square

roots with polynomials, we see that the nets {e1/2α }α∈N , and {(1− eα)1/2}α∈N asymp-

totically commute with each ai, and

‖(1− eα)
1/2ji‖2 = ‖j∗i (1− eα)ji‖ → 0

as α→∞, so a sufficiently large choice of α in (9) gives

‖γα(ai)− ai‖ < 5δ, 1 ≤ i ≤ n.

Now take δ to be ε/5, and (7) is proved.

We now turn to the inequality Λ(J) ≤ Λ(A). Given j1, . . . , jn ∈ J , ‖ji‖ ≤ 1, and

ε > 0, we may choose a finite rank completely bounded map φ : A → A such that

‖φ‖cb ≤ Λ(A) and

‖φ(ji)− ji‖ < ε, 1 ≤ i ≤ n.

For each α ∈ N , define φα : J → J by

φα(j) = eαφ(j)eα, 1 ≤ i ≤ n.

then each φα has finite rank, ‖φα‖cb ≤ Λ(A), and, for 1 ≤ i ≤ n,

‖φα(ji)− ji‖ < ‖eαjieα − ji‖+ ε. (10)

A sufficiently large choice of α in (10) gives

‖φα(ji)− ji‖ < ε, 1 ≤ i ≤ n,

showing that Λ(J) ≤ Λ(A).
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Finally we show that Λ(A/J) ≤ Λ(A). Consider elements π(a1), . . . , π(an) ∈ A/J ,

and fix ε > 0. There exists φ : A → A such that φ has finite rank, ‖φ‖cb ≤ Λ(A),

and

‖φ(ρπ(ai))− ρπ(ai)‖ < ε (11)

for 1 ≤ i ≤ n. Apply π to (11) to obtain

‖πφρ(π(ai))− π(ai)‖ < ε

for 1 ≤ i ≤ n. Now define φ̃ : A/J → A/J by

φ̃ = πφρ.

Clearly φ̃ has finite rank, ‖φ̃‖cb ≤ Λ(A), and

‖φ̃(π(ai))− π(ai)‖ < ε

for 1 ≤ i ≤ n. This shows that Λ(A/J) ≤ Λ(A), proving the result. �

Remark 2. If we loosen the hypotheses of Theorem 1 and require only that ρ be

completely bounded, then the same proof yields the inequalities

Λ(A) ≤ max{Λ(J), ‖ρ‖cb Λ(A/J)}, Λ(J) ≤ Λ(A), Λ(A/J) ≤ ‖ρ‖cb Λ(A).

The next three results are preparatory for Theorem 6, and will handle some tech-

nical points arising there. The first of these is a spceial case of [5, Cor. 4.4(ii)]. For

completeness, we include a proof.

Proposition 3. Let A and B be C∗–algebras. Let E be a right Hilbert A–module and

let F be a right Hilbert B–module with a ∗–homomorphism φ : A→ L(F ). Consider

the internal tensor product E⊗φF , which is a right Hilbert B–module. Let S ∈ L(E)

and suppose T ∈ L(F ) is such that T and φ(a) commute for all a ∈ A. Then there

is R ∈ L(E ⊗φ F ) satisfying R(e⊗ f) = (Se)⊗ (Tf); we will write R = S ⊗ T .

Proof. The operator S ⊗ idF is well known to belong to L(E ⊗φ F ); (see [13, p.

42]). It will suffice to show idE ⊗ T ∈ L(E ⊗φ F ), for in general we will have

S⊗T = (S⊗ idF ) ◦ (idE ⊗T ). Hence, without loss of generality, we assume S = idE.

The C–linear map from the algebraic tensor product (over C) E ⊗ F to itself

defined by e⊗ f 7→ e⊗ Tf is a right B–module map and sends the submodule

N = span {ea⊗ f − e⊗ φ(a)f | e ∈ E, f ∈ F, a ∈ A}
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into itself. In order to see that the resulting map (E ⊗ F )/N → (E ⊗ F )/N gives

rise to a bounded B–linear map E ⊗φ F → E ⊗φ F , let n ∈ N, e1, . . . , en ∈ E and

f1, . . . , fn ∈ F , and let g =
∑n

i=1 ei ⊗ fi. Then

〈g, g〉B =
∑
i,j

〈fi, φ(〈ei, ej〉A)fj〉B = 〈f, φn(X)f〉Fn = 〈φn(X1/2)f, φn(X
1/2)f〉Fn ,

where f is the column vector (f1, . . . , fn)
t in the Hilbert B–module F n, where X is

the matrix X = (〈ei, ej〉A)1≤i,j≤n ∈ Mn(A), which, by [13, Lemma 4.2], is positive,

and where φn : Mn(A) → Mn(L(F )) = L(F n) is the ∗–homomorphism obtained

by application of φ to each element of a matrix. On the other hand, letting h =∑n
i=1 ei ⊗ Tfi, we have

〈h, h〉B =
∑
i,j

〈Tfi, φ(〈ei, ej〉A)Tfj〉B

= 〈φn(X1/2)T̃ f, φn(X
1/2)T̃ f〉Fn = 〈T̃ φn(X1/2)f, T̃φn(X

1/2)f〉Fn ,

where T̃ = diag(T, . . . , T ) ∈ Mn(L(F )). Therefore, (cf [13, Prop. 1.2]),

〈h, h〉B = |T̃ φn(X1/2)f |2 ≤ ‖T̃‖2|φn(X1/2)f |2 = ‖T‖2〈g, g〉B

and ‖h‖ ≤ ‖T‖ ‖g‖. Consequently, we get idE ⊗ T : E ⊗φ F → E ⊗φ F with

‖idE ⊗ T‖ ≤ ‖T‖. An easy calculation shows that idE ⊗ T ∗ is the adjoint of idE ⊗ T .

Thus idE ⊗ T ∈ L(E ⊗φ F ). �

Recall that a conditional expectation of a C∗–algebra A onto a C∗–subalgebra

B is by definition a projection of norm 1. It follows from [22] that a conditional

expectation is both completely contractive and completely positive.

Proposition 4. Let A1 ⊆ A2 ⊆ · · · ⊆ A be an increasing chain of C∗–subalgebras of

a C∗–algebra A, such that
⋃∞
n=1An is dense in A. Suppose that there are conditional

expectations ρn : An+1 → An onto An, for all n ≥ 1. Then

Λ(A) = sup
n∈N

Λ(An). (12)

Proof. From the family (ρn)n≥1 we obtain conditional expectations ψn : A→ An onto

An, n ≥ 1. It then follows that Λ(A) ≥ Λ(An) for all n ≥ 1.

To see the reverse inequality in (12), let n ∈ N, let F ⊆ An be a finite subset and

let ε > 0. Then there is a finite rank map φ : An → An such that ‖φ(x)− x‖ < ε for

all x ∈ F and ‖φ‖cb ≤ Λ(An). But φ ◦ψn : A→ An ⊆ A satisfies ‖φ ◦ψn(x)− x‖ < ε
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for all x ∈ F and ‖φ ◦ ψn‖cb = ‖φ‖cb. By indexing over all finite subsets F of
⋃
nAn

and all ε > 0, the corresponding finite rank maps φ ◦ ψn yield a net approximating

the identity map, with completely–bounded–norm uniformly bounded by the right–

hand–side of (12). �

Proposition 5. Let B be a C∗–algebra and let H be a right Hilbert B–module such

that {〈h1, h2〉B : h1, h2 ∈ H} generates B. Then Λ(K(H)) = Λ(B).

Proof. This result follows immediately from the fact, mentioned on [4, p. 391], that

K(H) is an inductive limit of matrix algebras over B, in the sense of the definition

on [4, pp. 380–381].

For the reader’s convenience, we will describe a related proof based on another

construction of D. Blecher [5]. Following the notation of [5], let Cn(B) denote the

right Hilbert B–module which consists of columns over B of length n with the B–

valued inner product

〈(a1, . . . , an)
t, (b1, . . . , bn)

t〉B =
n∑
i=1

a∗i bi, ai, bi ∈ B.

Then, by [5, Theorem 3.1] and the part of the proof found on [5, p. 266], there exist

nets of adjointable contractive maps

H
φα−→ Cn(α)(B)

ψα−→ H, α ∈ N,

such that

lim
α
‖ψα(φα(h))− h‖ = 0, h ∈ H.

These maps induce a diagram

K(H)
eφα−→ K(Cn(α)(B))

eψα−→ K(H), α ∈ N, (13)

of complete contractions given by

φ̃α(S) = φαSφ
∗
α, ψ̃α(T ) = ψαTψ

∗
α, α ∈ N,

for S ∈ K(H) and T ∈ K(Cn(α)(B)), whose compositions converge to idK(H) in the

point norm topology. The relations

φαθh1,h2φ
∗
α = θφα(h1),φα(h2), ψαθk1,k2ψ

∗
α = θψα(k1),ψα(k2),



The completely bounded approximation property 9

for hi ∈ H, ki ∈ Cn(α)(B), are easy to check and show that φ̃α and ψ̃α have the

appropriate ranges in (13). Now K(Cn(α)(B)) is the matrix algebra Mn(α)(B) over

B, for which Λ(K(Cn(α)(B))) = Λ(Mn(α)(B)) = Λ(B).

Given S1, . . . , Sr ∈ K(H) and ε > 0, choose α ∈ N so large that

‖ψ̃α(φ̃α(Si))− Si‖ < ε/2, 1 ≤ i ≤ r, (14)

and then choose a finite rank map µ : K(Cn(α)(B)) → K(Cn(α)(B)) such that ‖µ‖cb ≤
Λ(B) and

‖µ(φ̃α(Si))− φ̃α(Si)‖ < ε/2, 1 ≤ i ≤ r. (15)

Then ψ̃αµφ̃α : K(H) → K(H), the composition of the diagram

K(H)
eφα−→ K(Cn(α)(B))

µ−→ K(Cn(α)(B))
eψα−→ K(H),

has finite rank with completely bounded norm at most Λ(B), and the triangle in-

equality gives

‖ψ̃αµφ̃α(Si)− Si‖ < ε, 1 ≤ i ≤ r,

from (14) and (15). This shows that Λ(K(H)) ≤ Λ(B).

To establish the reverse inequality, we can consider H as a left K(H)–module.

Then [18, Prop. 3.8] shows that the roles of K(H) and B are reversed, and the above

argument gives Λ(K(H)) ≥ Λ(B). We note that a similar result for modules over

von Neumann algebras appears in [2, Lemma 4.8]. �

We are now able to state and prove the main result of the paper.

Theorem 6. Let B be a C∗–algebra and let H be a Hilbert B,B–bimodule such that

{〈h1, h2〉B : h1, h2 ∈ H} generates B.

Consider the extended Cuntz–Pimsner C∗–algebra E(H). Then Λ(E(H)) = Λ(B).

In particular, E(H) has the completely bounded approximation property if and only

if B does.

Proof. We will follow quite closely the proof of [10, Thm. 3.1]. Since B is contained as

a C∗–subalgebra of E(H) which is the image of a conditional expectation E(H) → B,

we have Λ(B) ≤ Λ(E(H)).

Let H̃ = H ⊕ B and identify H with the submodule H ⊕ 0 ⊆ H̃. Then (see [17]),

E(H) is contained in E(H̃) in the obvious way. There is a projection P : H̃ → H

that commutes with the left action of B, and using Proposition 3 to take tensor
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products of copies of P yields a projection F (P ) : F(H̃) → F(H), compression

with respect to which gives a conditional expectation E(H̃) → E(H). Therefore,

Λ(E(H)) ≤ Λ(E(H̃)).

We will show that Λ(E(H̃)) ≤ Λ(B). By [10, Claim 3.4], E(H̃) is isomorphic to

the crossed product A oΨ N of a certain C∗–subalgebra A ⊆ E(H̃) by an injective

endomorphism Ψ, that is given by Ψ(a) = LaL∗ for an isometry L ∈ E(H̃). As

described by Cuntz [7] and Stacey [21] (see also the discussion on p. 432 of [10]), the

crossed product AoΨ N is isomorphic to a corner p(Ãoα Z)p of the crossed product

of a C∗–algebra Ã by an automorphism α, where Ã is the inductive limit C∗–algebra

of the system

A
Ψ→ A

Ψ→ A
Ψ→ · · · . (16)

We have Λ(E(H̃)) = Λ(p(Ã oα Z)p) ≤ Λ(Ã oα Z). From [20, Thm. 3.4], we have

Λ(Ã oα Z) = Λ(Ã). Letting σ : A → A be σ(a) = L∗aL, we have that σ is a

completely positive left inverse of Ψ. Thus Ψ ◦ σ is a conditional expectation from A

onto Ψ(A) and Proposition 4 applies to the inductive limit (16). We conclude that

Λ(Ã) = Λ(A).

From the proof of [10, Claim 3.5], we have an increasing chain

B = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ A (17)

of C∗–subalgebras of A, such that
⋃∞
n=1An is dense in A. Moreover, for each n ≥ 1

there is an ideal In ⊆ An such that An/In is isomorphic to An−1; this isomorphism

followed by the inclusion An−1 ↪→ An splits the short exact sequence

0 → In → An → An/In → 0.

Finally, the ideal In is isomorphic to K(H⊗Bn). By Proposition 5, Λ(In) ≤ Λ(B).

Using Theorem 1 and proceeding by induction, one shows that Λ(An) ≤ Λ(B) for all

n ≥ 0. The quotient map An → An/In followed by the isomorphism An/In → An−1

is a left inverse for the inclusion An−1 ↪→ An. Thus, Proposition 4 applies to the

chain (17) and we obtain Λ(A) ≤ Λ(B).

These inequalities, applied sequentially, lead to Λ(E(H)) ≤ Λ(B). �
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3. Concluding remarks

An interesting open problem is whether taking reduced (amalgamated) free prod-

ucts preserves the class of C∗–algebras that possess the CBAP, or, for example, the

class of C∗–algebras having Haagerup invariant equal to 1. It was shown in [10, Prop.

4.2] that a reduced free product C∗–algebra A,

(A, φ) = (A1, φ1) ∗ (A2, φ2), (18)

can be embedded into E(H) for a particular Hilbert bimodule H over A1⊗minA2. It

was also shown in [10, Prop. 5.1] that a reduced amalgamated free product C∗–algebra

A,

(A, φ) = (A1, φ1) ∗B (A2, φ2),

can be realized as a quotient of a subalgebra of E(H ′) for a particular Hilbert bimod-

ule H ′ over A1⊕A2. This, together with the result from [10] that E(H) is exact when

H is a Hilbert bimodule over an exact C∗–algebra, yielded a new proof that the class

of exact C∗–algebras is closed under taking reduced (amalgamated) free products.

(See [9] for the first proof of this fact.)

However, this paper’s Theorem 6 does not answer in a similar way the question

about the CBAP for free products, (at least not obviously), because the CBAP does

not automatically pass to subalgebras or to quotients. Moreover, the copy of the free

product C∗–algebra A from (18) in E(H) exhibited in [10] is not in general the image

of a conditional expectation E(H) → A. To see this, first note from [11] that E(H)

is a nuclear C∗–algebra whenever H is a Hilbert bimodule over a nuclear C∗–algebra.

(This also follows readily from the proof of exactness found in [10], combined with

the conditional expectation E(H̃) → E(H) used in the proof of Theorem 6.)

There are many known examples when A1 and A2 in (18) are nuclear, but their free

product A is not nuclear. In these cases, E(H) is nuclear and A, therefore, cannot

be the image of a conditional expectation E(H) → A.

References

[1] C. Akemann and G.K. Pedersen, Ideal perturbations of elements in C∗–algebras, Math. Scand.

41 (1977), 117–139.

[2] C. Anantharaman–Delaroche, Amenable correspondences and approximation properties for von

Neumann algebras, Pacific J. Math. 171 (1995), 309–341.

[3] W.B. Arveson, Notes on extensions of C∗–algebras, Duke Math. J. 44 (1977), 329–355.



12 K.J. Dykema, R.R. Smith

[4] D.P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), 365–421.

[5] D.P. Blecher, A new approach to Hilbert C∗–modules, Math. Ann. 307 (1997), 253–290.

[6] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple

Lie group of real rank one, Invent. Math. 96 (1989), 507–549.

[7] J. Cuntz, The internal structure of simple C∗–algebras, Operator Algbebras and Applications,

R.V. Kadison, ed., Proc. Symposia Pure Math. 38 Part I, Amererican Mathematical Society,

1982, pp. 85–115.

[8] J. De Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups

and their discrete subgroups, Amer. J. Math. 107 (1985), 455–500.

[9] K.J. Dykema, Exactness of reduced amalgamated free products of C∗–algebras, Forum. Math.

16 (2004), 161-180.

[10] K.J. Dykema and D. Shlyakhtenko, Exactness of Cuntz–Pimsner C∗–algebras, Proc. Edinburgh

Math. Soc. 44 (2001), 425–444.

[11] E. Germain, Approximation properties for Toeplitz–Pimsner C∗–algebras, preprint (2002).

[12] U. Haagerup, An example of a nonnuclear C∗–algebra, which has the metric approximation

property, Invent. Math. 50 (1979), 279–293.

[13] E.C. Lance, Hilbert C∗–modules, a Toolkit for Operator Algebraists, London Math. Soc. Lecture

Note Series 210, Cambridge University Press, 1995.

[14] P. Muhly and B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83

(1998), 53–73.

[15] P. Muhly and B. Solel, Tensor algebras over C∗–correspondences: representations, dilations,

and C∗–envelopes, J. Funct. Anal. 158 (1998), 389–457.

[16] M.M. Nilsen and R.R. Smith, Approximation properties for crossed products by actions and

coactions, Internat. J. Math. 12 (2001), 595–608.

[17] M. Pimsner, A class of C∗–algebras generalizing both Cuntz–Krieger algebras and crossed prod-

ucts by Z, Free Probability Theory, D.-V. Voiculescu, ed., Fields Inst. Commun. 12, 1997, pp.

189–212.

[18] I. Raeburn and D.P. Williams, Morita equivalence and continuous–trace C∗-algebras, Mathe-

matical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998.

[19] A.M. Sinclair and R.R. Smith, The Haagerup invariant for tensor products of operator spaces,

Math. Proc. Cam. Phil. Soc. 120 (1996), 147–153.

[20] A.M. Sinclair and R.R. Smith, The completely bounded approximation property for discrete

crossed products, Indiana Univ. Math. J. 46 (1997), 1311–1322.

[21] P.J. Stacey, Crossed products of C∗–algebras by ∗–endomorphisms, J. Austral. Math. Soc. Series

A 54 (1993), 204–212.

[22] J. Tomiyama, On the projection of norm one in W∗–algebras, Proc. Japan Acad. 33 (1957),

608–612.



The completely bounded approximation property 13

Department of Mathematics, Texas A&M University, College Station TX 77843–

3368, USA

E-mail address: kdykema@math.tamu.edu

E-mail address: rsmith@math.tamu.edu


